ATTACHMENT A

Flow Frequency Analysis

MEMORANDUM

DEPARTMENT OF ENVIRONMENTAL QUALITY Piedmont Regional Office 4949-A Cox Road Glen Allen, Virginia 23060

SUBJECT: Flow Frequency Determination / 303(d) Status

Addison-Evans Water Treatment Plant - VA0006254

TO: Brian Wrenn

FROM: Jennifer Palmore, P.G.

DATE: January 7, 2016

COPIES: File

The Addison-Evans Water Production and Laboratory facility (WTP) is located near Brandermill in Chesterfield County. The facility discharges to Swift Creek directly below the Swift Creek Reservoir dam at rivermile 2DSFT030.73. Flow frequencies have been requested for use in developing effluent limitations for the VPDES permit.

Swift Creek Reservoir is operated as a public water supply reservoir. Due to the withdrawals by Chesterfield County and an agreement between the county and the landowners immediately adjacent to Swift Creek Reservoir, Swift Creek has the potential to go dry immediately downstream of the reservoir during periods of low flow. The flow frequencies are presented below.

Swift Creek at discharge point

Drainage Area = 65 mi²

1Q30 = 0.0 cfs High Flow 1Q10 = 0.0 cfs 1Q10 = 0.0 cfs High Flow 7Q10 = 0.0 cfs 7Q10 = 0.0 cfs High Flow 30Q10 = 0.0 cfs30Q10 = 0.0 cfs HM = 0.0 cfs

30Q5 = 0.0 cfs

This analysis does not address any other withdrawals, discharges, or springs.

Due to the lack of release from the dam during low flow events, the stream s considered a Tier 1 water at the vicinity of the outfall. Effluent data should be used to characterize the stream during critical low-flow conditions.

During the 2012 and draft 2014 305(b)/303(d) Water Quality Integrated Reports, Swift Creek from the Swift Creek Reservoir dam downstream to Reedy Creek was assessed as a Category 5A water ("A Water Quality Standard is not attained. The water is impaired or threatened for one or more designated uses by a pollutant(s) and requires a TMDL (303d list).") The applicable fact sheets are attached. The Aquatic Life Use is impaired due to dissolved oxygen exceedances. The Wildlife Use was fully supporting and the Recreation- and Fish Consumption Uses were not assessed.

Swift Creek is located within the study area for the Appomattox River Basin Bacterial TMDL, which was approved by the EPA on 8/30/2004 and by the SWCB on 12/20/2005. The facility originally received an E. coli wasteload allocation of 1.05E+10 cfu/year. However, that was subsequently determined to be an

Flow Frequency Determination VA0006254 – Addison Evans WTP Page 2

error as the water treatment plant is not expected to be a source of additional fecal bacteria. The TMDL was modified on 2/2/2011 to remove the wasteload allocation.

The Chesapeake Bay TMDL, which was approved by the EPA on 12/29/2010, allocates loads for total nitrogen, total phosphorus, and total suspended solids to protect the dissolved oxygen and submerged aquatic vegetation acreage criteria in the Chesapeake Bay and its tidal tributaries. Unfortunately, the Addison-Evans WTP was inadvertently excluded from the aggregated loads for non-significant wastewater dischargers in the Appomattox River tidal freshwater estuary (APPTF). Before the permit can be reissued, we need to confirm that there is available reserve capacity to allow issuance of the permit. The nutrient allocations are administered through the Watershed Nutrient General Permit; the TSS allocations are considered aggregated and facilities with technology-based TSS limits are considered to be in conformance with the TMDL.

If you have any questions concerning this analysis, please let me know.

2012 Fact Sheets for 303(d) Waters

RIVER BASIN: James River Basin HYDROLOGIC UNIT: 02080207

STREAM NAME: Swift Creek

TMDL ID: J17R-08-DO 2012 IMPAIRED AREA ID: VAP-J17R-08

ASSESSMENT CATEGORY: 5A TMDL DUE DATE: 2022

IMPAIRED SIZE: 3.67 - Miles Watershed: VAP-J17R

INITIAL LISTING: 2010

UPSTREAM LIMIT: Swift Creek Reservoir dam

DOWNSTREAM LIMIT: Reedy Creek

Swift Creek from the Swift Creek Reservoir dam downstream to its confluence with Reedy Creek.

CLEAN WATER ACT GOAL AND USE SUPPORT:

Aquatic Life Use - Not Supporting

IMPAIRMENT: Dissolved Oxygen

For the 2010 cycle 2 DEQ stations were added and both stations were impaired for DO.

For the 2012 cycle the segment still remains impaired for DO and there has been no new data since 2010 cycle.

IMPAIRMENT SOURCE: Impoundment

The source of the DO is suspected to be low flows released from dams in the summer and fall.

RECOMMENDATION: Standards Change

2014 Fact Sheets for 303(d) Waters

RIVER BASIN: James River Basin HYDROLOGIC UNIT: 02080207

STREAM NAME: Swift Creek

TMDL ID: J17R-08-DO 2014 Impaired Area ID: VAP-J17R-08

ASSESSMENT CATEGORY: 5A TMDL DUE DATE: 2022

IMPAIRED SIZE: 3.78 - Miles Watershed: VAP-J17R

INITIAL LISTING: 2010

UPSTREAM LIMIT: Swift Creek Reservoir dam

DOWNSTREAM LIMIT: Reedy Creek

Swift Creek from the Swift Creek Reservoir dam downstream to its confluence with Reedy Creek.

CLEAN WATER ACT GOAL AND USE SUPPORT:

Aquatic Life Use - Not Supporting

IMPAIRMENT: Dissolved Oxygen

For the 2010 cycle 2 DEQ stations (2-SFT030.65, 2-SFT027.38) were added and both stations were impaired for aquatic life use for DO. there has been no new data since 2010 cycle.

IMPAIRMENT SOURCE Impoundment

The source of the DO is suspected to be low flows released from dams in the summer and fall.

RECOMMENDATION: Standards Change

ATTACHMENT B

Site Visit Report

DEPARTMENT OF ENVIRONMENTAL QUALITY Piedmont Regional Office

4949-A Cox Road Glen Allen, VA 23060 804/527-5020

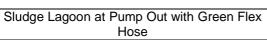
SUBJECT: Site Visit - VA0006254, Addison-Evans Water Production and Laboratory

DATE: December 29, 2015

On December 14, 2015, staff from the DEQ Piedmont Regional Office visited the Addison-Evans Water Production and Laboratory in Chesterfield County, Virginia. The visit consisted of a review of the water treatment plant and wastewater treatment system, groundwater monitoring wells, and the outfall. The WTP uses settling, filtration, and chlorination to treat the raw water to drinking water standards. Wastewater generated from the water treatment process includes settling basin solids (approximately 0.1 MGD) and backwash water (approximately 0.4 MGD) from the anthracite filters. The wastewater is stored in a three-cell sludge lagoon. Currently, only two of the three cells are functional. The functioning cells have floating agitators that create a slurry of the backwash water and the settled solids. The slurry is pumped out and sent to the Proctors Creek WWTP. Due to pipe capacity issues, the slurry is pumped out from two separate points. The main pump out is to a sewer connection immediately adjacent to the lagoon. The other pump out consists of a green flex hose run to two separate manholes that are part of the collection system to Proctors Creek WWTP. Each pump station has a separate float system to automatically initiate pumping.

Overall, the WTP appears to be well run and maintained. The above-ground settling basins have undergone extensive repair to seal leaks and cracks. The facility is continuing to repair cracks/leaks as needed. Outside above-ground storage tanks are double-walled or have containment systems to prevent discharges should a leak or spill occur. Additional chemical storage for orthophosphate is located inside and not exposed to weather events. The green flex hose conveying wastewater to the manholes appeared to be in good condition. Solids were cleaned out of the sludge lagoon in 2012. It is not anticipated that clean out of the lagoon will be necessary in the next permit cycle. A back-up generator is located on site and is tested under load on a weekly basis.

The facility has five groundwater monitoring wells on site. The original upgradient or background well (MW-3) was converted to a compliance well and a new background well (MW-4) was installed. Historically, MW-3 and MW-5 have shown the greatest difference above the background well.



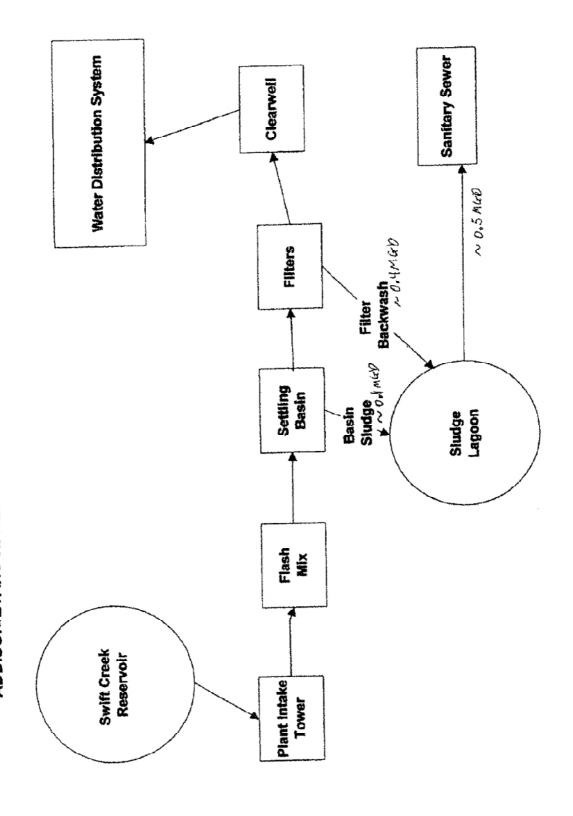
Above-ground Settling Basins and MW-3

Sludge Lagoon with WTP in Background

Green Flex Hose Going to Manholes

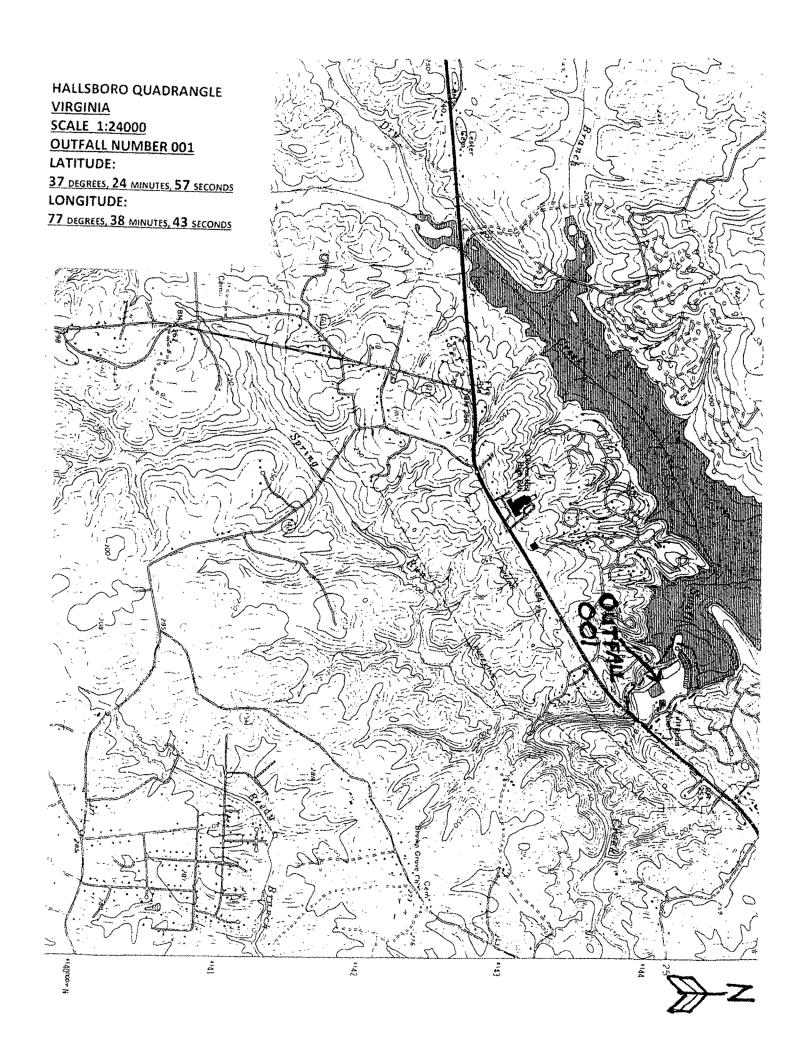
Main Pump Out and Float System

MW-1



MW-4 MW-5

ATTACHMENT C


Plant Flow Diagram

ADDISON/EVANS WATER PRODUCTION AND LABORATORY FACILITY

ATTACHMENT D

Topographic Map

ATTACHMENT E

Permit Application and Certified Effluent Data (08/25/2010)

EPA I D. NUMBER (copy from liem I of Form I) VA 0006254 PLEASE PRINT OR TYPE IN THE UNSHADED AREAS ONLY. You may report some or all of this information on separate sheets (use the same format) institated of completing these pages. SEE INSTRUCTIONS. V. INTAKE AND EFFLUENT CHARACTERISTICS (confined from page 3 of Form 2-C)

PARTA - You must provide the results of at least one analysis for every pollutant in this table. Complete one table for each outsall. See instructions for additional detalls.

OUTFALL NO.

100

b. NO. OF ANALYSES CONCENTRATION (2) MASS 4. INTAKE (optional) B. LONG TERM AVERAGE VALUE VALUE VALUE VALUE b. MASS STANDARD UNITS 3. UNITS (specify if blank) Ų a, CONCEN-TRATION d. NO. OF ANALYSES (Z) MASS C. LONG TERM AVRG VALUE (if ovailable) (1) CONCENTRATION VALUE VALUE VALUE 2. EFFLUENT
b. MAXIMUM 30 DAY VALUE
(formlind) (2) MASS MAXIMUM (1) CONCENTRATION MINIMON VALUE VALUE VALUE MAXIMUM B. MAXIMUM DAILY VALUE (Z) MASS (1) CONCENTRATION MINIMUM VALUE VALUE VALUE c. Total Organic Carbon (70C) a. Biochemical Oxygen b. Chemical Oxygen Demand (COD) 1. POLLUTANT d. Total Suspended Solids (7:SS) e. Ammonia (es N) h. Temperaturo g. Temperature Demand (80D) (summer) Flow winter) ď PART B — Mark XT is column 2-a for each poflutent you know or have reason to believe is present Mark XT in column 2-b for each pollutant you believe to be absent. If you mark column 2-a for each pollutant which is limited either directly, or indirectly, or indirectly but expresses, in an effect of indirectly provide the provide the realist of it leads one analysis for that pollutants for which you mark column 2-a, you must provide directly, or indirectly but expresses, in an effect of indirectly provide analysis for the provide analysis for

	2 MA	2. MARK 'X"			ri	3. EFFLUENT				4 UNITS	TS	5. INT.	5. INTAKE (opnond)	c
1. POLLUTANT AND	65	ď	B. MAXIMUM DAILY VALUE	ALY VALUE	b. MAXIMUM 30 DAY (If available)	DAY VALUE	b. MAXIMUM 30 DAY VALUE c. LONG TERM AVRG. VALUE (If available)	VRG. VALUE				a. LONG TERM AVERAGE VALUE	AVERAGE	
CAS NO. (If evailable)	BELLEVED	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(Z) MASS	ANALYSES	A CONCENTRATION	b. MASS	TRATION b. MASS CONCENTRATION (2) MASS	(Z) MASS	ANALYSES
a. Bromide (24859-67-9)														
b. Chlorine, Total Residual														
c. Color														
d. Fecal Coliform														
e. Phoride (16984-48-8)														
f Nitrate-Natrito (#s N)														
EPA Form 3510-2C (8-90)	-2C (0-30)						PAGE V-1					J	CONTINUE ON REVERSE	IN REVERS

Note: Previous data is certified as being representative.

٤	2 MARK X			3.	3. EFFLUENT				4. UNITS	rs	S. (NT)	5. INTAKE (optional)	
1. POLLUTANT	م	8. MAXIMUM DALLY VALUE	AILY VALUE	b. MAXIMUM 30 DAY VALUE (if ovailable)	DAY VALUE	c. LONG TERM AVRG. VALUE (f avoilable)	·				AVERAGE VALUE		
CAS NO. BELLEY (if available) PRESE	BELIEVED BELIEVED PRESENT ABSENT		(Z) MASS	(1) CONCENTRATION	(2) MASS	CONCENTRATION		ANALYSES	a CONCENTRATION	b. MASS	(1) CONCENTRATION	ASS	D. NO. OF ANALYSES
g. Nitrogen. Total Organic (os n)			<u></u>									T	
h. Oil and Greate													
1. Phosphorus (es.P.), Toted (7723-14-0)													
. Radoactivity													
(1) Alphe. Total				***************************************									
(Z) Beta, Total													
(3) Radium, Total													
(4) Radium 226, Total													
t. Suffete (as <i>SO.</i>)) (14808-79-8)													
1. Suffide (ax S)													
m. Suffie (as 30,1) (14265-45-3)													
n, Surfactants													
o, Avmenum, Total (7429-80-5)													
p. Banum, Total (7440-39-3)													
q. Boron, Total (7443-42-8)													
r. Cobsit, Tolei (7440-48-4)													
s. Iron, Total (7439-89-6)													
(. Magnesium, Total (7438-95-4)													
u. Molybdanum. Total (7439-98-7)													
v. Mangenese. Total (7439-96-5)										.,			
w. Th. Total (7440.31-5)	~~~												
r Titanium. Total (7440-32-6)			A				-						
EPA Farm 3510-2C (8-90)	(06					PAGE V-2					J	CONTINUE	CONTINUE ON PAGE V-3

Note: Previous data is certified as being representative.

EPA I.D NUMBER (copy from item I of Farm I) OUTFALL NUMBER

CONTINUED FROM PAGE 3 OF FORM 2-C

PART C - If you are a primary industry and this outsill contains process wastewater, refer to Table 2c-2 in the instructions to determine which of the GCMAS fractions you must test for. Mark "X" in column 2-a for such GCMAS fractions, and found the same of t

briefly des	briefly describe the reasons the postditional details and requirements.	easons the property	pollutant i	briefly describe the reasons the pollutant is expected to be additional details and requirements.	discharged.	Note that there ar	e 7 pages to	this part, please	aview each	carefully. Co	mptete one ta	ble (all 7 pa	be discharged. Note that there are 7 pages to this part, please raview each carefully. Complete one table (all 7 pages) for each outlat. See instructions for	at reast one i 19. See instr	analysis or uctions for
	2.8	2. MARK X				3.6	3. EFFLUENT	***************************************			STIMIT A	7.0	TATION A	TATANT.	
	æ	خ	1	a. MAXIMUM DAI	DAILY VALUE	b. MAXIMUM 30 DAY VALUE	DAY VALUE	c. LONG TERM AVRG	AVRG	1		2	a. LONG TERM AVERAGE VALUE	RE (optional	
(if available) RI	TESTING BELIEVED BELIEVED REQUIRED PRESENT ABSENT	ELIEVED BE	BSENT	(1) CONCENTRATION	(Z) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(7) MASS	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1)		B, NO. OF
METALS, CYANIDE, AND TOTAL PHENOLS	AND TOTAL	PHENOLS											CONCENTRATION	(Z) MASS	
1M. Antimony, Total (7440-38-0)															
2M. Arsenic, Total (7440-38-2)															
3M. Beryflum. Total (7440-41-7)															
4M. Cadmium, Tolaf (7440-43-9)															
5M. Chromium, Total (7440-47-3)															
6M. Copper, Total (7440-50-8)															
7M. Lead, Total (7439-82-1)															
6M. Mercury, Total (7438-97-6)															Ī
9M. Nickei, Total (74/0-02-0)															
10M. Selenium, Total (7782-49-2)															
11M. Silver, Totel (7440-22-4)															
12M. Thalfurn, Total (7440-28-0)															
13M. Zinc., Total (7440-66-6)															
14M. Cyanide, Totai (57-12-5)		-1	~												
15M. Phenols, Total															
DIOXIN									4						
2,3,7,8-Tetra- chlorodiberzo-P- Dioxin (1784-01-8)				DESCRIBE RESULTS	LTS			A. Aleksander der der der der der der der der der							
							-		-	-	***************************************				

Note: Previous data is certified as being representative.

EPA Form 3510-2C (8-90)

CONTINUE ON REVERSE

CONTINUED FROM THE FROM	FRONT			The state of the s				The Party of		ŗ
	2. MARK 'X			3. EFFLUENI		A. UNITS		D. He I MALE (aplicant)	olional)	
	ď	٥	A. MAXIMUM DAILY VALUE	5. MAXIMUM 30 DAY VALUE (if available)	VALUE (Jowalable)			AVERAGE VALUE		
(If overlable) REQUIR	TESTING BELIEVED BELIEVED REQUIRED PRESENT ABSENT	BELIEVED ABSENT	CONCENTRATION (2) MASS	CONCENTRATION (2) MASS	CONCENTRATION (2) MASS	ANALYSES TRATION	b. MASS	CONCENTRATION (2) MASS	ASS ANALYSES	. 03
GC/MS FRACTION - VOLATILE COMPOUNDS	ATILE COMPO			արևոր առաջանում գուրա գործում արդանացացացացացացացացացացացացացացացացացացա						
1V. Accrotein (107-02-8)										
2V, Acaylenibite (107-13-1)										
3V, Benzene (71.43-2)										
4V. Bis (Chioro- methyl) Ether (542-88-1)			DELISTED 02-4-1981	ANALYSIS NOT REQU	ANALYSIS NOT REQUIRED FOR THIS PARAMETER	ER				
5V. Bromoform (75-25-2)										
6V. Carbon Tetrachloride (56-23-5)										
7V. Chlorobenzene (108-90-7)										
8V. Chtorodi- bromomethane (124-48-1)										·····
9V, Chloroethane (75-00-3)								A COURT COMPANY OF THE PARTY OF		
10V 2-Chloro- ethylvinyl Ether (110-75-8)										
11V CMoreform (67-66-3)										
12Y, Oldslore- bromamethene (75-27-4)										7
13V. Dichloro- difuorometrane (75-71-8)			DELISTED 01-8-1981	ANALYSIS NOT REQ	ANALYSIS NOT REQUIRED FOR THIS PARAMETER	TER				
14V. 1.1-Dichloro- ethane (75-34-3)										
15V. 1,2-Dichloro- ethane (107-08-2)										
16V, 1,1-Dichloro- ethylene (75-35-4)										
17V. 1.2-Oktharo- propene (78-87-5)							- Control of the cont			
18V. 1,3-Dichlaro- propylene (542-75-6)										
19V, Ethylbenzene (100-41-4)										1
20V. Methyl Bramide (74-83-9)										
21V. Methyl Chloride (74-87-3)						The state of the s				
EPA Form 3510-2C (8-90)	~			DAG	PAGE V.4			CONTIN	CONTINUE ON PAGE V-5	40

Note: Previous data is certified as being representative.

CONTINUED FROM PAGE V-4	W PAGE V4	4			- Annual Control of the Control of t	22 6	9 6551116417			-	STIM: 1 A	100	5 INTA	5 INTAKE footional	
	7	MAKA Y	-			13.7	T LOCATE		70000					in the state of th	
	G.	م	ل	a. MAXIMUM DAILY VALUE	AILY VALUE	5. MAXIMUM 30 DAY VALUE (If avoilable)	AY VALUE	VALUE (If mailable)		į			AVERAGE VALUE		((
CAS NUMBER (if avoilable)	TESTING BELIEVED BELIEVED RECUIRED PRESENT ABSENT	BEUEVED	ABSENT ABSENT		V (Z) MASS	(1) CONCENTRATION	(2) MASS	CONCENTRATION	(Z) MASS	ANALYSES	FRATION	b. MASS	(1) CONCENTRATION	(Z) MASS	ANALYSES
GC/MS FRACTION VOLATILE COMPOUNDS (continued)	- VOLATILE	COMPOU	NDS (com	iinwed)	ł }		***************************************								
ZZV. Methylene Chloride (75-08-2)															
23V. 1, 1, 2, 2. Tetrachloroefrane (79-34-5)															
24V, Tetrachloro- ethylene (127-18-4)															
25V. Toluene (108-88-3)															
26V. 1,2-Trans- Dichloroethylene (156-60-5)															
27V. 1,1,1.Trictiono- ethane (71-55-6)															
28V. 1,1,2-Trichloro- elhane (79-00-5)															
29V Trichloro- ethylene (79-01-6)															
30V, Trichloro- fucromethane (75-68-4)				DEUSTED	01-8-1981	ANALYSIS NOT REQUIRED	OT REQL	JIRED FOR T	FOR THIS PARAMETER	METER					
31V. Vinyl Chloride (75-01-4)															
GC/MS FRACTION	N ACID CO	- ACID COMPOUNDS							,						
1A. 2-Chloropherof (95-57-8)															
2A. 2,4-Dichloro- phenol (120-63-2)															
3A. 2,4-Dimethyl- phenol (105-87-9)															
4A. 4,8-Dinjtro-O- Cresof (534-52-1)															
54, 2,4-Dinitro- phenal (51-28-5)															
6A. 2-Nitrophenol (88-75-5)															
7A. 4-Narophenol (100-02-7)															
8A. P-Chtoro-M- Cresol (59-50-7)															
9A, Pentachtoro- phenol (87-88-5)															
10A Phend (108-95-2)															
11A. 2.4.6-Trichtono- phenol (88-05-2)	<u> </u>														
EPA Form 3510-2C (8-90)	2C (8-90)						PAG	PAGE V.5					8	CONTINUE ON REVERSE	REVERSE

Note: Previous data is certified as being representative.

CONTINUED FROM THE FRONT	FRONT				200	2000			241815	24.5	C INCTAL	C. INCLANCE CONSTRUCT	
	Z. MARK X			1	3. EFF	LUENI			a Ch	21.0	S. IN I AND I	TOTE (optional)	
	ثم	Ų	B. MAXIMUM DAI	LY VALUE	5 MAXIMUM 30 DAY VALUE (if available)	r value	c. LONG TERM AVRG. VALUE (if available)	ĺ	14040		AVERAGE VALUE		<u> </u>
(if available) REQUIR	TESTING BELIEVED RELIEVED RECUIRED PRESENT ABSENT	RELIEVED	(1) CONCENTRATION		CONCENTRATION (2		CONCENTRATION (Z) MASS	ANALYSES	TRATION	b. MASS	CONCENTRATION	(2) MASS	ANALYSES
GCMS FRACTION - BASENEUTRAL COMPOUNDS	EMEUTRAL CC	MPOUND				-							
18. Acenephthene (63-32-8)													
2B. Aconsphilyene (208-90-8)													
38. Authracene (120-12-7)													
48. Benzidine (92-87-5)													
5B. Benzo (a) Anthracene (56-55-3)													
6B. Benzo (a) Pyrene (50-32-8)													
78. 3,4-Benzo- fluoranthene (205-99-2)													
88. Benzo (ghi) Perylene (191-24-2)													
98. Benzo (k) Fluoranthene Coozus.sp	- Annual								.,				
106 Bis (2-Chloro- edoxy) Methane (111-91-1)													
118, Bis (2-Chloro- esbyl) Ether (111-44-4)													
128. Bis (7. Chkrasopropy) Ether (102-80-1)													
138. Bis (2-Edny- heryt) Philtalate (117-81-7)					A. H U								
14B. 4-Bromophenyl Phenyl Ether (101-55-3)													
158. Butyl Benzyl Phthalate (85-68-7)													
16B. 2-Chloro- naphilhalene (91-58-7)													
17B. 4-Chloro- pheny Pheny Ether (7005-72-3)													
188. Chrysene (218-01-9)													
198. Dibenzo (a./) Anthrecene (53-70-3)													
20B. 1.2-Orduloro benzene (95-50-1)										_			
218. 1,3-Di-chloro- benzene (541-73-1)													
EPA Form 3510-2C (8-90)						PAGE	PAGE V-6				ឋ	CONTINUE ON PAGE V-7	PAGE V-7

Note: Previous data is certified as being representative.

CONTINUED TACING ASS.	2. MARK -X	×			3, EF	3. EFFLUENT			4. UNITS	TS	S. INTAK	S. INTAKE (opilonal)	
	-	-	B. MAXIMUM C	AILY VALUE	b. MAXIMUM 30 DAY VALUE (f overlobte)	YY VALUE	c, LONG TERM AVRG. VALUE (if available)				8, LONG TERM AVERAGE VALUE		,
(if avoilable)	TESTING BELIEVED RECENT	ED BELIEVED	2	(Z) MASS	CONCENTRATION	Z) MASS	CONCENTRATION (Z) MASS	ANALYSES	TRATION	b. MASS	CONCENTRATION	(7) MASS ANALYSES	YSES
GCMS FRACTION - BASEMEUTRAL COMPOUNDS (continued)	- BASEMEUTRA	COMPOU	NOS (continued)			<u> </u>				-	£		T
228 1.4 Dichioro- berzzere (106-46-7)													T
238, 3,3-Dichion- bergidine (81-84-1)													
248. Diethyl Phihelate (84-65-2)													
258. Dimethyl Prthadato (131 -11-3)			a de la companio										
288. DK-N-Butyl Phthalale (84-74-2)													
278. 2.4-Olntro- toluene (121-14-2)													T
288. 2,8-Dinitro- loluene (606-20-2)													T
29B. Di-N-Octyl Phthalete (117-84-0)													T
30B. 1,2-Olphenythydraxine (as Azoberzene) (122-66-7)													
318. Flyorenthene (206-44-0)													T
328 Fhorene (88-73-7)													T
336. Hexachloro- benzene (118-74-1)													
348. Herachtoro- butadiene (87-68-3)													
359. Hexactions- syclopentatione (77-47-4)													
36B Hexarchioro- ethans (67-72-1)													
37B. Indeno (1,2,3-cd) Pyrene (183-38-5)													
388. Isopharane (76-59-1)			~~~										
39B. Naphthalene (91-20-3)													
408. Nivobenzene (98-85-3)													
418. N-Naro- sodimethylamine (62-75-9)													
428. N-Nitrosodi- N-Propylamine (621-64-7)													
EPA Form 3510-2C (8-80)	(8-80)					PAGE V.7	5.4.7				CON	CONTINUE ON REVERSE	ERSE

Note: Previous data is certified as being representative.

CONTINUED FROM THE FRONT	M THE FRO	ONT	,			# & E	3 EFFLUENT				4. UNITS	ITS	5 INTA	5. INTAKE (optional)	
1. POLLUTANT			_			b. MAXIMUM 30 DAY VALUE	SAY VALUE	C. LONG TERM AVRG.	AVRG.				a. LONG TERM	ERM	
	TESTING REQUIRED	TESTING BELIEVED BELIEVED REQUIRED PRESENT ABSENT	BELIEVED	OONCENTRATION (2) MASS	(2) MASS	(1) (1) (1) (1) (1) (1) (1)	ste) (z) wass	8	(Z) MASS	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	CONCENTRATION (2) M	ALUE (Z) MASS	b. NO. OF
ğ	I - BASEAN	EUTRAL CO	OMPOUNE	DS (continued)	1 1		1 1							1	
43B. N-Nitro- sodiphenylamine (88-30-5)									,						
448. Phenenthrene (85-01-6)															
458. Pyrene (129-00-0)															
48B. 1,2,4-Tri- chlorobenzene (120-82-1)															
GCMS FRACTION PESTICIDES	N - PESTIC	10ES													
1P. Aldrin (309-00-2)															
2P. a-8HC (319-84-6)															
3P. p.BHC (319-85-7)															
4P. 7-8HC (58-89-9)															
SP. 8-BMC (319-86-8)															
6P. Chlordane (57-74-9)															
7P. 4,4'-DDT (50-28-3)	-1														
8P. 4,4"-DDE (72-55-9)															
8P. 4.4"-00D (72-54-8)															
10P. Dietarin (80-57-1)															
11P. a-Enosulfan (115-29-7)															
12P. p-Endosulfan (115-29-7)															
13P. Endosuffen Sufate (1031-07-8)															
14P. Endrin (72-20-8)															
15P. Endrin Aldehyde (7421-83-4)															
16P. Heptachlor (76-44-8)															
EPA form 3510-2C (8-90)	CC (8-90)						PAG	PAGE V-8					8	CONTINUE ON PAGE V-9	PAGE V-9

Note: Previous data is certified as being representative.

				EPA	LD. NUMBER	EPA 1.D. NUMBER (copy from Item I of Form I)		OUTFALL NUMBER	3ER	Γ					
CONTINUED FROM PAGE V-8	PAGE V.8														The state of the s
		2 MARK -X				1 °C	3. EFFLUENT				4. UNITS	TS	5. INTA	5. INTAKE (optional)	
1. POLLUTANT	,	-		a, MAXIMUM DAILY VALUE	LY VALUE	b. MAXIMUM 30 DAY VALUE (If avoilable)	DAY VALUE	c, LONG TERM AVRG. VALUE (ff avoitable)		0	in Lorenza		8, LONG TERM AVERAGE VALUE	RINE	C Z
ER F	TESTING BELIEVED BELIEVED REGURED PRESENT ABSENT	BELEVED	BELIEVED ABSENT	(1) CONCENTRATION		CONCEN		CONCENTRATION (2) MASS	(Z) MASS	AWAL YSES	TRATION	b. MASS	CONCENTRATION (2) MASS	(2) MASS	ANALYSES
GC/MS FRACTION - PESTICIDES (continued)	- PESTICIE	ES (continu	(pan											£	
17P. Heptechlor Epoxide															
18P, PCB-1242 (53469-21-9)															
19P, PC8-1254 (11097-89-1)															And the second s
20P. PCB-1221 (11104-28-2)								The second secon							
21P. PCB-1232 (11141-16-5)															
22P. PCB-1248 (12672-29-6)															
23P, PCB-1260 (11096-82-5)															
24P PCB-1016 (12874-11-2)															
25P. Toxaphene (8001-35-2)															
EPA Form 3510-2C (6-90)	C (8-90)						PAGE V-9	6-7							

Note: Previous data is certified as being representative.

Waste Disposal from the Backwash & Basins Sludge Lagoon

1.1 General Operation

Daily backwash of 4 high-rate filters (3 million gallons/day (mgd) each), and sludge removal from sedimentation basins, adds approximately 0.5 mgd of waste to our lagoon. Two *Myers* solids handling pumps with 4-inch discharge are located in a wet well to send waste from the lagoon to the domestic sewer system. The pumps are operated by float/mercury switches and each pump has a maximum capacity of 720 gallons/minute (gpm); the pumps are most often operated as one pump at a time. If pump/wet well malfunctions occur, two 6-inch permanent ports leading to pipe feeding the domestic sewer system have been set up for use with a large portable pump. This capability adds an extra buffer to prevent discharge from the lagoon. [Note: No discharges have been made in the 24 years we have maintained this inactive permit. No discharge is planned; the permit is maintained in case of unforeseen events.]

1.2 Long-term Waste Disposal

Sludge solids will build up in the lagoon over time. Occasionally sludge will need to be removed to ensure proper volume is provided for the constant stream of new waste. This procedure is an infrequent occurrence; the most recent removal of solids was 21 years after the last needed large scale sludge removal. Vendors will be given specifications ensuring all Department of Environmental Quality (DEQ) regulations and concerns are met in removal and final disposal of the built-up sludge. Vendors who meet DEQ concerns will submit plans that may include on-site thickening (e.g. belt press) or direct pumping of solids. Final disposal may include addition of the sludge to a landfill or land application.

All plans found to be in accordance with DEQ/EPA regulations will be considered and cost may be a final determining factor. [For example, the most recent disposal included a DEQ-approved plan of direct pumping of solids to tanker trucks followed by land application. A second vendor had bid for solids thickening and disposal in a landfill at approximately twice the cost and twice the time to complete.] Daily project management for such projects include; minimization of sludge disposal effect on normal operations, logistics for trucks and large equipment on property, ensuring proper sludge removal, ensuring non-existent environmental effect, minimization of impact on surrounding local residents, and verifying appropriate final disposal of solids.

PLEASE PRINT OR TYPE IN THE UNSHADED AREAS ONLY. You may report some or all of this information on separate sheets (use the same format) instead of completing these pages.

SEE INSTRUCTIONS.

EPA I.D. NUMBER (copy from Item I of Form I) VA 0006254

SEE HASI NOOT ISING	ا												
V. INTAKE AND EFFLUENT CHARACTERISTICS (continued from page 3	FLUENT CHARA	CTERISTICS (contir	nued from page 3	of Form 2-C)							0	OUTFALL NO.	
PART A -You must provide the results of at least one analysis for every poll	provide the result	s of at least one and	alysis for every po	ollutant in this table	a. Complete one	utant in this table. Complete one table for each outfall. See instructions for additional details.	ifall. See instruc	tions for addition	onal details.				
,				2. EFFLUENT	FN				3. UNITS (specify if blank)	ille)	4	4. INTAKE (optional)	
	a. MAXIM	B. MAXIMUM DAILY VALUE	b. MAXIMUM 30 (if avai	DAY lable)	1	c. LONG TERM AVRG. VALUE (if available)	_				a. LONG TERM AVERAGE VALUE	ERM /ALUE	0
1. POLLUTANT	(1) CONCENTRATION	ATION (2) MASS	(1) CONCENTRATION	N (2) MASS	(1) CONCENTRATION		(2) MASS A	d. NO. OF 8	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	D. NO. OF ANALYSES
a. Biochemical Oxygen Demand (BOD)	len <3	<12.51						1	MG/L	Pounds			
b. Chemical Oxygen Demand (COL)	28	116.8						1	MG/L	Pounds			
c. Total Organic Carbon (TOC)	ton 11	45.87						1	MG/L F	Pounds			
d. Total Suspended Solids (733)	80	333.6					:	1	MG/L	Pounds			
e. Ammonia (as N)	0.45	1.67						1	MG/L F	Pounds			
f. Flow	VALUE	0.5	VALÜE		VALUE			г	MGD	-	VALUE		
g. Temperature (winter)	VALUE	4	VALUE		VALUE			П	ာ့		VALUE		i
h. Temperature (summer)	VALUE	29.7	VALUE		VALUE			1	ာ့	-	VALUE		
. pH	MINIMUM 6.3	MAXIMUM 6.3	MINIMOM	MAXIMUM				г	STANDARD UNITS				
PART B - Mark "X" directly, quantita	in column 2-a for or indirectly but tive data or an ex	Mark "X" in column 2-a for each pollutant you know or have reason to believe is present. Mark "X" in column 2-b for each pollutant you believe to be absent. If you mark column 2a for any pollutant which is limited either directly but expressly, in an effluent limitations guideline, you must provide the results of at least one analysis for that pollutant. For other pollutants for which you mark column 2a, you must provide quantitative data or an explanation of their presence in your discharge. Complete one table for each outfall. See the instructions for additional details and requirements.	know or have re- fluent limitations esence in your dis	ason to believe is guideline, you mu scharge. Complete	present. Mark "X st provide the re e one table for ea	("in column 2-b for esults of at least ach outfall. See th	y each pollutant one analysis fo e instructions fo	t you believe to r that pollutan r additional de	be absent, if your For other pollials and require	u mark colu tants for w	umn 2a for any poll mich you mark col	utant which is umn 2a, you i	imited either nust provide
	2. MARK "X"			3	3. EFFLUENT				4. UNITS	TS	9. IN	5. INTAKE (optional)	,
<u> </u>	ei ei	a. MAXIMUM DAILY VALUE	JAILY VALUE	b. MAXIMUM 30 DAY VALUE (if available)		c. LONG TERM AVRG. VALUE (if available)	AVRG. VALUE				a. LONG TERM AVERAGE VALUE	I AVERAGE JE	
CAS NO. BEI	VED BEL ENT AB	CONCENTRATION	(2) MASS	(1) CONCENTRATION	(Z) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF ANALYSES	a. CONCENTRATION	b. MASS		V (2) MASS	b. NO. OF ANALYSES
a. Bromide (24959-67-9)	X												
b. Chlorine, Total Residual	×	0.01	0.04					1	T/SW	Pound			
c. Color	×	80						τ	ACU	N/A			
d, Fecal Coliform	X	50	946,250					1	MPN/100M	MPN			
e. Fluoride (16984-48-8)	X	0.94	3.92		ĺ			τ	MG/L	Pound			
f. Nitrate-Nitrite (as N)	×	<0.1	<0.42	!				7	MG/L	Pound			

CONTINUE ON REVERSE

PAGE V-1

EPA Form 3510-2C (8-90)

ITEM V-B CONTINUED FROM FRONT

11EM V-B CONTINUED FROM FROM	2 MAR	X.X.				3 EFELLENT				STINIT 7	181	ATNI S	5 INTAKE (antional)	
1. POLLUTANT AND	,	4	MAXIMIM DAILY VALLE	I V VALUE	b. MAXIMUM 30 DAY VALUE	DAY VALUE	c. LONG TERM AVRG. VALUE	/RG. VALUE				a. LONG TERM	ERM	
CAS NO.	BELIEVED PRESENT	BELIEVED ABSENT	10	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	ASS	b. NO. OF ANALYSES
g. Nitrogen, Total Organic (as N)	X		0.59	2.46					1	MG/L	Pound			:
h. Oil and Grease		X												
i. Phosphorus (as P), Total (7723-14-0)	X		0.048	0.20					1	MG/L	Pound			
j. Radioactivity														
(1) Alpha, Total		X												
(2) Beta, Total		×												ı
(3) Radium, Total		X								:				
(4) Radium 226, Total		X												
k. Sulfate (as 30.) (14808-79-8)	X		38	158.5		į			1	Mg/L	Ponud			
I. Suffide (as 5)	i	X												
m. Sulfite (as SO ₃) (14265-45-3)		X												
n. Surfactents		X												
o. Aluminum, Total (7429-90-5)	X		0.046	0.19					1	MG/L	Pound			
p. Barium, Total (7440-39-3)		X												-
q. Boron, Total (7440-42-8)		X			•									:
r. Cobalt, Total (7440-48-4)		X								i				
s. Iron, Total (7439-89-6)	X		4.3	17.93					1	MG/L	Pound			
t, Magnesium, Total (7439-95-4)		X												
u. Molybdenum, Total (7439-98-7)		X												
v. Manganese, Total (7439-96-5)	X		0.68	2.84					н	MG/L	Pound			
w. Tin, Total (7440-31-5)		X												
x. Titanium, Total (7440-32-6)		X												
EPA Form 3510-2C (8-90)	-2C (8-90)	•					PAGE V-2					Ö	CONTINUE ON PAGE V-3	N PAGE V-3

OUTFALL NUMBER EPA I.D. NUMBER (copy from Item 1 of Form 1) VA 0006254

CONTINUED FROM PAGE 3 OF FORM 2-C

b. NO. OF ANALYSES discharged in concentrations of 10 ppb or greater. If you mark column 2b for acrolein, acrylonitrile, 2,4 dimitrophenol, or 2-methyl-4, 6 dimitrophenol, you must provide the results of at least one analysis for each of these pollutants which you must either submit at least one analysis or build and so they which you must column 2b, you must either submit at least one analysis or briefly describe the reasons the pollutant is expected to be discharged. Note that there are 7 pages to this part; please review each carefully. Complete one table (all 7 pages) for each outfall. See instructions for PART C - If you are a primary industry and this outfall contains process wastewater, refer to Table 2c-2 in the instructions to determine which of the GC/MS fractions you must test for. Mark "X" in column 2-a for and nonrequired GC/MS fractions that apply to your industry and for ALL toxic metals, cyanides, and total phenols. If you are not required to mark column 2-a (secondary industries, nonprocess wastewater outfalls, and nonrequired GC/MS fractions), mark "X" in column 2-b for each pollutant you mark column 2-b for each pollutant you must provide the results of at least one analysis for that pollutant. If you mark column 2b for any pollutant, you must provide the results of at least one analysis for that pollutant if you know or have reason to believe it will be 5. INTAKE (optional) (1) CONCENTRATION (2) MASS a. LONG TERM AVERAGE VALUE b. MASS 4. UNITS a. CONCEN-TRATION d. NO. OF ANALYSES CONCENTRATION (2) MASS c. LONG TERM AVRG. VALUE (if available) b. MAXIMUM 30 DAY VALUE (1) CONCENTRATION (2) MASS 3 EFFLUENT a. MAXIMUM DAILY VALUE (1) CONCENTRATION (2) MASS 8. c. c. TESTING BELIEVED BELIEVED REQUIRED PRESENT ABSENT additional details and requirements. METALS, CYANIDE, AND TOTAL PHENOLS 2. MARK "X" 4M. Cadmium, Total 1M. Antimony, Total (7440-36-0) 3M. Beryllium, Total (7440-41-7) AND CAS NUMBER 1M. Silver, Total rotal (7440-28-0) 2M. Arsenic, Total (7440-38-2) 8M. Mercury, Total 1. POLLUTANT 6M. Copper, Total (7440-50-8) SM. Chromium, Total (7440-47-3) 13M. Zinc, Total 9M. Nickel, Total (7440-02-0) Total (7782-49-2) 14M. Cyanide, Total (57-12-5) (if available) 7M. Lead, Total 10M. Selenium, 12M. Thallium, (7440-66-6)(7440-22-4)(7440-43-9)(7439-92-1)(7439-97-6)

CONTINUE ON REVERSE PAGE V-3 EPA Form 3510-2C (8-90) Dioxin (1764-01-6)

DESCRIBE RESULTS

2,3,7,8-Tetra-chlorodibenzo-P-

NIXOID

5M. Phenois,

CONTINUED FROM THE FRONT

SOUTH OF THE PROPERTY OF THE P	2 0	2 MARK "X"			FNEL LENT			STINIT	SE	S INTAK	5 INTAKE (optional)	
1. POLLUTANT					b. MAXIMUM 30 DAY VALUE	L	9	:	,	a LONG TE	RM	
	ej	انه		a. MAXIMUM DAILY VALUE	(if available)	VALUE (if available)		A DOING		AVERAGE VALUE		Ü
	REQUIRED P	BELIEVED BELIEVED PRESENT ABSENT		(1) CONCENTRATION (2) MASS	(1) CONCENTRATION (2) MASS	(1) CONCENTRATION (2) MASS	ASS ANALYSES	TRATION	b. MASS	(1) CONCENTRATION	(2) MASS ANAL	ANALYSES
GC/MS FRACTION - VOLATILE COMPOUNDS	- VOLATILE	COMPOUN										
1V. Acarolein (107-02-8)			X									
2V. Aarylonitrile (107-13-1)			X			!	:					
3V. Benzene (71-43-2)			×								<u>i</u>	
4V. Bis (Chloro- methyl) Ether (542-88-1)			X				-	-			-	
5V. Bromoform (75-25-2)			×									
6V. Carbon Tetrachloride (56-23-5)			×									
7V. Chlorobenzene (108-90-7)			\times									
8V. Chlorodi- bromomethane (124-48-1)			X							:		
9V. Chloroethane (75-00-3)			X									_
10V. 2-Chloro- ethylvinyl Ether (110-75-8)			×								i	
11V. Chlaroform (67-66-3)			X								-	
12V. Dichloro- bromomethane (75-27-4)		 	×									
13V. Dichloro- difluoromethane (75-71-8)	-		×								i	
14V. 1,1-Dichloro- ethane (75-34-3)			X									
15V. 1,2-Dichloro- ethane (107-06-2)			×									
16V. 1,1-Dichloro- ethylene (75-35-4)			X							-		
17V. 1,2-Dichloro- propane (78-87-5)			X									:
18V. 1,3-Dichloro- propylene (542-75-6)			X							i		
19V. Ethylbenzene (100-41-4)			X				. !					
20V. Methyl Bromide (74-83-9)			X								i	
21V. Methyl Chloride (74-87-3)			\times									
EPA Form 3510-2C (8-90)	(8-90)				PAGE V-4	E V-4	ı			NOO	CONTINUE ON PAGE V-5	3E V-5

CONTINUED FROM PAGE V-4

בפאיז וואסבט דאסאווי אסטי	2. MARK *X				3. EFFLUENT			4. UNITS	LS	5. INTAI	5. INTAKE (optional)	
		ď	a, MAXIMUM DAILY V	ALUE	b. MAXIMUM 30 DAY VALUE (if available)	c. LONG TERM AVRG.				a. LONG TERM AVERAGE VALUE	Ì	
CAS NUMBER TEST TEST TEST REDU	TESTING BELIEVED REGULEVED REQUIRED PRESENT	BELIEVED ABSENT		MASS	(1) CONCENTRATION (2) MASS	1 8	d. NO. OF	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	ASS	ANALYSES
GC/MS FRACTION - VOLATILE COMPOUNDS (continued)	LATILE COMPO	ONDS (com	inned)							ľ		
22V. Methylene Chloride (75-09-2)		×										
23V. 1,1,2,2- Tetrachloroethane (79-34-5)		X										
24V. Tetrachloro- ethylene (127-18-4)		X										
25V. Toluene (108-88-3)		X										
26V. 1,2-Trans- Dichloroethylene (156-60-5)		X								- 11 -		
27V. 1,1,1-Trichloro- ethane (71-55-6)		X										
28V. 1,1,2-Trichloro- ethane (79-00-5)		X										
29V Trichloro- ethylene (79-01-6)		X										
30V. Trichloro- fluoromethane (75-69-4)		X										
31V. Vinyl Chloride (75-01-4)		X										•
GC/MS FRACTION - ACID COMPOUNDS	SID COMPOUNDS											
1A. 2-Chlorophenol (95-57-8)		X		_								
2A. 2,4-Dichloro- phenol (120-83-2)		X										
3A. 2,4-Dimethyl- phenol (105-67-9)		X										
4A, 4,6-Dinitro-O- Cresol (534-52-1)		X										
5A, 2,4-Dinitro- phenol (51-28-5)		X										
6A, 2-Nitrophenol (88-75-5)		X			!							1
7A. 4-Nitrophenol (100-02-7)		X								1		
8A, P-Chloro-M- Cresol (59-50-7)		×										
9A. Pentachloro- phenol (87-86-5)		X										
10A. Phenol (108-95-2)	į	×	1									
11A. 2,4,6-Trichloro- phenol (88-05-2)		X					i					
EPA Form 3510-2C (8-90)	(Q				PAG	PAGE V-5	•			000	CONTINUE ON REVERSE	REVERSE

CONTINUED FROM THE FRONT

		2 MARK "X"			3 FEELLIENT			STINIT	2	5 INTA	5 INTAKE (ontional)	
1. POLLUTANT					b. MAXIMUM 30 DAY VALUE	c. LONG TERM AVRG.		5	2	a. LONG TERM	RM	
CAS NUMBER (if available)	a. TESTING REQUIRED	b. Believed Present	G. BELIEVED ABSENT	CONCENTRATION (2) MASS		CONCENTRATION (2) MASS	d. NO. OF ANALYSES	a. CONCENTRATION	b. MASS	(1) CONCENTRATION	ASS	b. NO. OF ANALYSES
GC/MS FRACTION - BASE/NEUTRAL COMPOUNDS	- BASE/NE	UTRAL CON	MPOUNDS									
1B. Acenaphthene (83-32-9)			X									
2B. Acenaphtylene (208-96-8)			X							-		
3B. Anthracene (120-12-7)			X									
4B. Benzidine (92-87-5)			X									
5B. Benzo (a) Anthracene (56-55-3)			X									
6B. Benzo (a) Pyrene (50-32-8)			X		}							
7B. 3,4-Benzo- fluoranthene (205-99-2)			X									
8B. Benzo (g/u) Perylene (191-24-2)			×									
9B. Benzo (k) Fluoranthene (207-08-9)			×									
10B. Bis (2-Chloro- ethoxy) Methane (111-91-1)			×									
11B. Bis (2-Chloro- ethyl) Ether (111-44-4)			×									
12B. Bis (2- Chloroisopropyl) Ether (102-80-1)		·	X									
13B. Bis (2- <i>Eihyl-hexyl</i>) Phthalate (117-81-7)			X									
14B. 4-Bramophenyl Phenyl Ether (101-55-3)			×									
15B. Butyl Benzyl Phthelate (85-68-7)			X									
16B. 2-Chloro- naphthalene (91-58-7)			X									
17B. 4-Chloro- phenyl Phenyl Ether (7005-72-3)			×									
18B. Chrysene (218-01-9)			×									
19B. Dibenzo (a.h) Anthracene (53-70-3)			X									
20B. 1,2-Dichloro- benzene (95-50-1)			×									
21B, 1,3-Di-chloro- benzene (541-73-1)			X									
EPA Form 3510-2C (8-90)	(8-90)				PAGE V-6	9-/-2				CO	CONTINUE ON PAGE V-7	AGE V-7

CONTINUED FROM PAGE V-6

	2. N	2. MARK "X"				3. EFFLUENT	1		ŀ	4. UNITS		5. INTA	5. INTAKE (optional)	
	 ej	۵	ن	a. MAXIMUM DAILY V	I HON	b. MAXIMUM 30 DAY VALUE (if available)	IE c. LONG TERM AVRG. VALUE (if available)	Į.				a. LONG TERM AVERAGE VALUE]	
CAS NUMBER (if available)	TESTING BE REQUIRED PI	BELIEVED BE PRESENT A	BELIEVED ABSENT	(1) CONCENTRATION (2)	MSS	(1) (2) MASS	<u> 8</u>	2) MASS ANALYSES	OF a CONCENTISES TRATION		b. MASS	(1) CONCENTRATION	SS	ANALYSES
GC/MS FRACTION - BASE/NEUTRAL COMPOUNDS (continued)	- BASE/NEU	ITRAL COM	POUND		1 1									
22B. 1,4-Dichloro- benzene (106-46-7)			X				-			_	<u> </u>			_
23B. 3,3-Dichloro- benzidine (91-94-1)			X									-		
24B, Diethyl Phthalate (84-66-2)			X						<u></u>					
25B. Dimethyl Phthalate (131 -11-3)			X											
268. Di-N-Butyl Phthalate (84-74-2)			X		,									
27B. 2,4-Dinitro- toluene (121-14-2)			X	:	i i			3		<u> </u>	 -			
288. 2,6-Dinitro- toluene (606-20-2)			X)		
29B. Di-N-Octyl Phthalate (117-84-0)			X								:			
30B. 1,2-Diphenylhydrazine (as Azoberzene) (122-66-7)			X			_			·-	_				
31B. Fluoranthene (206-44-0)		<u></u>	X					•						
32B. Fluorene (86-73-7)			X											
33B. Hexachloro- benzene (118-74-1)			X		<u></u>									
34B. Hexachloro- butadiene (87-68-3)			X				!							
35B. Hexachloro- cyclopentatiene (77-47-4)			X											
36B Hexachloro- ethane (67-72-1)			X											
37B. Indeno (1,2,3-ca) Pyrene (193-39-5)			X											
38B. Isophorone (78-59-1)			X											
39B. Naphthalene (91-20-3)			X						<u>-</u>		i			:
40B. Nitrobenzene (98-95-3)			X					!			,			
41B. N-Nitro- sodimethylamine (62-75-9)			X											
42B. N-Nitrosodi- N-Propylamine (621-64-7)			X			:								
EPA Form 3510-2C (8-90)	(8-90)					₽.	PAGE V-7	!				NOO	CONTINUE ON REVERSE	REVERSE

CONTINUED FROM THE FRONT

		2 MAN DIV "V"			A CECI ICAL			A UNITE	Te	S INTAK	6 INTAKE (antional)	
TANT	Z- M	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1		S. EFFLUENI	L		7.03	2	S. INI AN	(obnound)	
	nj	ď	ú	a. MAXIMUM DAILY VALUE	D. MAXIMUM 30 DAT VALUE (if available)	C. LONG IEKM VALUE (If ava	L C	i d		AVERAGE VALUE		i c
(if available)	TESTING BELIEVED REQUIRED PRESENT	ELIEVED I	BELIEVED	ATION (2) MASS	(1) CONCENTRATION (2) MASS	CONCENTRATION (2) MASS	(2) MASS ANALYSES	a. CONCEN-	b. MASS	(1) CONCENTRATION	(2) MASS	ANALYSES
GC/MS FRACTION - BASE/NEUTRAL COMPOUNDS (continued)	- BASE/NEU	TRAL CON	MPOUNDS						, i			
43B. N-Nitro- sodiphenylamine (86-30-6)	-	_	X									
44B. Phenanthrene (85-01-8)			X									
45B. Pyrene (129-00-0)			×									
46B. 1,2,4-Tri- chlorobenzene (120-82-1)			X									
GC/MS FRACTION - PESTICIDES	- PESTICIDE	Si										
1P. Adrin (309-00-2)			X									
2P. α-BHC (319-84-6)			×									
3P. B-BHC (319-85-7)			×					i	į	-		
4P. ;-BHC (58-89-9)	_		×					i				
5P. 5-BHC (319-86-8)			×									
5P. Chlordane (57-74-9)			×									
7P. 4,4'-DDT (50-29-3)			X									
8P. 4,4'-DDE (72-55-9)			X									
9P. 4,4'-DDD (72-54-8)			X									
10P. Dieldrin (60-57-1)			×									
11P. a-Enosulfan (115-29-7)			×									1
12P. (-Endosulfan (115-29-7)		_	X									
13P. Endosulfan Sulfate (1031-07-8)			X									
14P. Endrin (72-20-8)			X									
15P. Endrin Adehyde (7421-93-4)			×									
16P. Heptachlor (76-44-8)			X									
EPA Form 3510-2C (8-90)	(06-8)		ļ	! !	PAGE V-8	E V-8			!	CON	CONTINUE ON PAGE V-9	PAGE V-9

					a division of			C. PETTALL BILLIANS	1	Г					
				E-A-	I.D. NUMBER	EFA I.D. NUMBER (copy from Hem 1 of Form 1)	y rorm ()	OUTFALL NUMBER	¥						
CONTINUED FROM PAGE V-8	M PAGE V.	60			VA	VA 0006254		100	1						
<u> </u>		2. MARK "X"				3. E	3. EFFLUENT				4. UNITS	S	5. INTAKE (optional)	(optional)	Γ
1. POLLUTANT AND	100	۵	ឋ	a. MAXIMUM DAILY V	ILY VALUE	b. MAXIMUM 30 DAY VALUE (if available)	DAY VALUE	c. LONG TERM AVRG. VALUE (if available)					a. LONG TERM AVERAGE VALUE		
CAS NUMBER (if available)	TESTING REQUIRED	TESTING BELIEVED BELIEVED REQUIRED PRESENT ABSENT			(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF ANALYSES	a, CONCENTRATION	b. MASS	(1) CONCENTRATION (2)	(2) MASS ANALYSES	SES
GCAMS FRACTION - PESTICIDES (cominued)	1- PESTIC	DES (continu	red)				1 (1					
17P. Heptachlor Epoxide			\triangleright												Γ
(1024-57-3)															
18P. PCB-1242 (53469-21-9)			X												
19P. PCB-1254 (11097-69-1)			X												
20P. PCB-1221 (11104-28-2)			X				·				. i				
21P. PCB-1232 (11141-16-5)			X												
22P. PCB-1248 (12672-29-6)			X								-				_
23P, PCB-1260 (11096-82-5)			X												
24P. PCB-1016 (12674-11-2)			X												_
25P. Toxaphene (8001-35-2)			X												

EPA Form 3510-2C (8-90)

PAGE V-9

ATTACHMENT F

Data Source Table for MSTRANTI, MSTRANTI, STATS Results

MSTRANTI DATA SOURCE REPORT

Stream Int	formation
Mean Hardness	The receiving stream is a Tier 1 stream, which is subject to surface
90% Temperature (annual)	water withdrawals and is assumed to be dry during low flow conditions.
90% Temperature (wet season)	During the low flow conditions, the stream flow consists entirely of
90% Maximum pH	effluent flow. Therefore, the effluent conditions are used for the stream
10% Maximum pH	data in the MSTRANTI spreadsheet.
Tier Designation	Flow Frequency Memo
Stream	Flows
All Data	The receiving stream is a Tier 1 stream, which is subject to surface water withdrawals and is assumed to be dry during low flow conditions. During the low flow conditions, the stream flow consists entirely of effluent flow. Therefore, the effluent conditions are used for the stream data in the MSTRANTI spreadsheet.
Mixing Inf	ormation
All Data	Because the stream flows during low flow conditions are assumed to be 100% effluent, 100% mixing is assumed.
Effluent In	formation
Mean Hardness	The most conservative default value is used.
90% Temperature (annual)	
90% Maximum pH	Permit Application
10% Maximum pH	
Discharge Flow	

Data Location:

Flow Frequency Memo – Attachment A Application Data – Attachment E

FRESHWATER WATER QUALITY CRITERIA / WASTELOAD ALLOCATION ANALYSIS

Facility Name: Addison-Evans Water Production and Laboratory Permit No.: VA0006254

Receiving Stream: Swift Creek Version: OWP Guidance Memo 00-2011 (8/24/00)

 Stream Information

 Mean Hardness (as CaCO3) =
 25 mg/L

 90% Temperature (Annual) =
 29.7 deg C

 90% Temperature (Wet season) =
 NA deg C

 90% Maximum pH =
 6.3 SU

 10% Maximum pH =
 6.3 SU

 Tier Designation (1 or 2) =
 1

 Public Water Supply (PWS) Y/N? =
 y

 Trout Present Y/N? =
 n

 Early Life Stages Present Y/N? =
 y

Stream Flows		
1Q10 (Annual) =	0	MGD
7Q10 (Annual) =	0	MGD
30Q10 (Annual) =	0	MGD
1Q10 (Wet season) =	NA	MGD
30Q10 (Wet season)	NA	MGD
30Q5 =	0	MGD
Harmonic Mean =	0	MGD

Mixing Information								
Annual - 1Q10 Mix =	0	%						
- 7Q10 Mix =	0	%						
- 30Q10 Mix =	0	%						
Wet Season - 1Q10 Mix =	NA	%						
- 30Q10 Mix =	NA	%						

Effluent Information		
Mean Hardness (as CaCO3) =	25	mg/L
90% Temp (Annual) =	29.7	deg C
90% Temp (Wet season) =	NA	deg C
90% Maximum pH =	6.3	SU
10% Maximum pH =	6.3	SU
Discharge Flow =	0.5	MGD

Parameter	Background		Water Qua	ality Criteria			Wasteload	d Allocations			Antidegrada	tion Baseline		Д	ntidegradati	ion Allocations			Most Limitin	g Allocations	
(ug/l unless noted)	Conc.	Acute	Chronic	HH (PWS)	НН	Acute	Chronic	HH (PWS)	НН	Acute	Chronic	HH (PWS)	НН	Acute	Chronic	HH (PWS)	НН	Acute	Chronic	HH (PWS)	НН
Acenapthene	0			6.7E+02	9.9E+02			6.7E+02	9.9E+02											6.7E+02	9.9E+02
Acrolein	0			6.1E+00	9.3E+00			6.1E+00	9.3E+00											6.1E+00	9.3E+00
Acrylonitrile ^C	0			5.1E-01	2.5E+00			5.1E-01	2.5E+00											5.1E-01	2.5E+00
Aldrin ^C	0	3.0E+00		4.9E-04	5.0E-04	3.0E+00		4.9E-04	5.0E-04									3.0E+00		4.9E-04	5.0E-04
Ammonia-N (mg/l)																					
(Yearly) Ammonia-N (mg/l)	0	5.20E+01	2.56E+00			5.20E+01	#######											5.20E+01	2.56E+00		-
(High Flow)	0	#VALUE!	#VALUE!			#VALUE!	#VALUE!											#VALUE!	#VALUE!		
Anthracene	0			8.3E+03	4.0E+04			8.3E+03	4.0E+04											8.3E+03	4.0E+04
Antimony	0			5.6E+00	6.4E+02			5.6E+00	6.4E+02											5.6E+00	6.4E+02
Arsenic	0	3.4E+02	1.5E+02	1.0E+01		3.4E+02	1.5E+02	1.0E+01										3.4E+02	1.5E+02	1.0E+01	-
Barium	0			2.0E+03				2.0E+03												2.0E+03	_
Benzene ^C	0			2.2E+01	5.1E+02			2.2E+01	5.1E+02											2.2E+01	5.1E+02
Benzidine ^C	0			8.6E-04	2.0E-03			8.6E-04	2.0E-03											8.6E-04	2.0E-03
Benzo (a) anthracene C	0			3.8E-02	1.8E-01			3.8E-02	1.8E-01											3.8E-02	1.8E-01
Benzo (b) fluoranthene ^C	0			3.8E-02	1.8E-01			3.8E-02	1.8E-01											3.8E-02	1.8E-01
Benzo (k) fluoranthene ^C	0			3.8E-02	1.8E-01			3.8E-02	1.8E-01											3.8E-02	1.8E-01
Benzo (a) pyrene ^C	0			3.8E-02	1.8E-01			3.8E-02	1.8E-01										_	3.8E-02	1.8E-01
Bis2-Chloroethyl Ether C	0			3.0E-02	5.3E+00			3.0E-02	5.3E+00										-	3.0E-02 3.0E-01	5.3E+00
Bis2-Chloroisopropyl Ether	_				6.5E+04													_	-		6.5E+04
Bis 2-Ethylhexyl Phthalate ^C	0	-		1.4E+03				1.4E+03	6.5E+04										-	1.4E+03	
	0			1.2E+01	2.2E+01			1.2E+01	2.2E+01									-		1.2E+01	2.2E+01
Bromoform ^C	0			4.3E+01	1.4E+03			4.3E+01	1.4E+03									-		4.3E+01	1.4E+03
Butylbenzylphthalate	0			1.5E+03	1.9E+03			1.5E+03	1.9E+03											1.5E+03	1.9E+03
Cadmium	0	8.2E-01	3.8E-01	5.0E+00		8.2E-01	3.8E-01	5.0E+00										8.2E-01	3.8E-01	5.0E+00	
Carbon Tetrachloride C	0			2.3E+00	1.6E+01			2.3E+00	1.6E+01											2.3E+00	1.6E+01
Chlordane ^C	0	2.4E+00	4.3E-03	8.0E-03	8.1E-03	2.4E+00	4.3E-03	8.0E-03	8.1E-03									2.4E+00	4.3E-03	8.0E-03	8.1E-03
Chloride	0	8.6E+05	2.3E+05	2.5E+05		8.6E+05	2.3E+05	2.5E+05										8.6E+05	2.3E+05	2.5E+05	-
TRC	0	1.9E+01	1.1E+01			1.9E+01	1.1E+01											1.9E+01	1.1E+01		-
Chlorobenzene	0			1.3E+02	1.6E+03			1.3E+02	1.6E+03											1.3E+02	1.6E+03

Parameter	Background		Water Qua	ality Criteria			Wasteload	d Allocations	3		Antidegradat	ion Baseline		A	Antidegradation	on Allocations			Most Limitin	g Allocations	
(ug/l unless noted)	Conc.	Acute	Chronic	HH (PWS)	НН	Acute	Chronic	HH (PWS)	НН	Acute	Chronic	HH (PWS)	НН	Acute	Chronic	HH (PWS)	НН	Acute	Chronic	HH (PWS)	НН
Chlorodibromomethane ^C	0			4.0E+00	1.3E+02			4.0E+00	1.3E+02									-	_	4.0E+00	1.3E+02
Chloroform	0			3.4E+02	1.1E+04			3.4E+02	1.1E+04											3.4E+02	1.1E+04
2-Chloronaphthalene	0			1.0E+03	1.6E+03			1.0E+03	1.6E+03											1.0E+03	1.6E+03
2-Chlorophenol	0			8.1E+01	1.5E+02			8.1E+01	1.5E+02											8.1E+01	1.5E+02
Chlorpyrifos	0	8.3E-02	4.1E-02			8.3E-02	4.1E-02											8.3E-02	4.1E-02		-
Chromium III	0	1.8E+02	2.4E+01			1.8E+02	2.4E+01											1.8E+02	2.4E+01		
Chromium VI	0	1.6E+01	1.1E+01			1.6E+01	1.1E+01											1.6E+01	1.1E+01		_
Chromium, Total	0			1.0E+02				1.0E+02											-	1.0E+02	_
Chrysene ^C	0			3.8E-03	1.8E-02			3.8E-03	1.8E-02											3.8E-03	1.8E-02
Copper	0	3.6E+00	2.7E+00	1.3E+03		3.6E+00	2.7E+00	1.3E+03										3.6E+00	2.7E+00	1.3E+03	
Cyanide, Free	0	2.2E+01	5.2E+00	1.4E+02	1.6E+04	2.2E+01	5.2E+00	1.4E+02	1.6E+04									2.2E+01	5.2E+00	1.4E+02	1.6E+04
DDD ^C	0	2.22	J.ZL+00	3.1E-03	3.1E-03	2.22	J.ZL+00	3.1E-03	3.1E-03										3.2L+00	3.1E-03	3.1E-03
DDE C	0				2.2E-03			2.2E-03											-		
DDT ^C	-			2.2E-03		4.45.00			2.2E-03									4.45.00		2.2E-03	2.2E-03
	0	1.1E+00	1.0E-03	2.2E-03	2.2E-03	1.1E+00	1.0E-03	2.2E-03	2.2E-03		-							1.1E+00	1.0E-03	2.2E-03	2.2E-03
Demeton	7	4.75.04	1.0E-01			4.75.04	1.0E-01												1.0E-01	-	-
Diazinon	0	1.7E-01	1.7E-01		4.05.04	1.7E-01	1.7E-01		4.05.04									1.7E-01	1.7E-01		
Dibenz(a,h)anthracene ^C	0			3.8E-02	1.8E-01			3.8E-02	1.8E-01											3.8E-02	1.8E-01
1,2-Dichlorobenzene	0			4.2E+02	1.3E+03			4.2E+02	1.3E+03									-	-	4.2E+02	1.3E+03
1,3-Dichlorobenzene	0			3.2E+02	9.6E+02			3.2E+02	9.6E+02									-	-	3.2E+02	9.6E+02
1,4-Dichlorobenzene	0			6.3E+01	1.9E+02			6.3E+01	1.9E+02									-	-	6.3E+01	1.9E+02
3,3-Dichlorobenzidine ^C	0			2.1E-01	2.8E-01			2.1E-01	2.8E-01										-	2.1E-01	2.8E-01
Dichlorobromomethane ^C	0			5.5E+00	1.7E+02			5.5E+00	1.7E+02									-	-	5.5E+00	1.7E+02
1,2-Dichloroethane ^C	0			3.8E+00	3.7E+02			3.8E+00	3.7E+02									-	-	3.8E+00	3.7E+02
1,1-Dichloroethylene	0			3.3E+02	7.1E+03			3.3E+02	7.1E+03									-	-	3.3E+02	7.1E+03
1,2-trans-dichloroethylene	0			1.4E+02	1.0E+04			1.4E+02	1.0E+04											1.4E+02	1.0E+04
2,4-Dichlorophenol	0			7.7E+01	2.9E+02			7.7E+01	2.9E+02											7.7E+01	2.9E+02
2,4-Dichlorophenoxy acetic acid (2,4-D)	0			1.0E+02				1.0E+02												1.0E+02	
1,2-Dichloropropane ^C	0			5.0E+00	1.5E+02			5.0E+00	1.5E+02											5.0E+00	1.5E+02
1,3-Dichloropropene ^C	0			3.4E+00	2.1E+02			3.4E+00	2.1E+02										_	3.4E+00	2.1E+02
Dieldrin ^C	0	2.4E-01	5.6E-02	5.2E-04	5.4E-04	2.4E-01	5.6E-02	5.2E-04	5.4E-04									2.4E-01	5.6E-02	5.2E-04	5.4E-04
Diethyl Phthalate	0			1.7E+04	4.4E+04			1.7E+04	4.4E+04											1.7E+04	4.4E+04
2,4-Dimethylphenol	0			3.8E+02	8.5E+02			3.8E+02	8.5E+02											3.8E+02	8.5E+02
Dimethyl Phthalate	0			2.7E+05	1.1E+06			2.7E+05	1.1E+06											2.7E+05	1.1E+06
Di-n-Butyl Phthalate	0			2.0E+03	4.5E+03			2.0E+03	4.5E+03											2.0E+03	4.5E+03
2,4 Dinitrophenol	0			6.9E+01	5.3E+03			6.9E+01	5.3E+03											6.9E+01	5.3E+03
2-Methyl-4,6-Dinitrophenol	0			1.3E+01	2.8E+02			1.3E+01	2.8E+02											1.3E+01	2.8E+02
2,4-Dinitrotoluene ^C	0			1.1E+00	3.4E+01			1.1E+00	3.4E+01									_	_	1.1E+00	3.4E+01
Dioxin 2,3,7,8-	Ü			1.12+00	J.4L+01			1.12+00	3.4L+01									_	_	1.12400	J.4LT01
tetrachlorodibenzo-p-dioxin	0			5.0E-08	5.1E-08			5.0E-08	5.1E-08									-	-	5.0E-08	5.1E-08
1,2-Diphenylhydrazine ^C	0			3.6E-01	2.0E+00			3.6E-01	2.0E+00											3.6E-01	2.0E+00
Alpha-Endosulfan	0	2.2E-01	5.6E-02	6.2E+01	8.9E+01	2.2E-01	5.6E-02	6.2E+01	8.9E+01									2.2E-01	5.6E-02	6.2E+01	8.9E+01
Beta-Endosulfan	0	2.2E-01	5.6E-02	6.2E+01	8.9E+01	2.2E-01	5.6E-02	6.2E+01	8.9E+01									2.2E-01	5.6E-02	6.2E+01	8.9E+01
Alpha + Beta Endosulfan	0	2.2E-01	5.6E-02			2.2E-01	5.6E-02											2.2E-01	5.6E-02	-	-
Endosulfan Sulfate	0			6.2E+01	8.9E+01			6.2E+01	8.9E+01											6.2E+01	8.9E+01
Endrin	0	8.6E-02	3.6E-02	5.9E-02	6.0E-02	8.6E-02	3.6E-02	5.9E-02	6.0E-02									8.6E-02	3.6E-02	5.9E-02	6.0E-02
Endrin Aldehyde	0	-		2.9E-01	3.0E-01			2.9E-01	3.0E-01											2.9E-01	3.0E-01

Parameter	Background		Water Qua	ality Criteria			Wasteload	Allocations	;		Antidegradation	on Baseline		А	ntidegradatio	n Allocations			Most Limitir	ng Allocations	
(ug/l unless noted)	Conc.	Acute		HH (PWS)	НН	Acute	Chronic	HH (PWS)	НН	Acute	1	H (PWS)	НН	Acute		HH (PWS)	НН	Acute	Chronic	HH (PWS)	нн
Ethylbenzene	0			5.3E+02	2.1E+03			5.3E+02	2.1E+03									_		5.3E+02	2.1E+03
Fluoranthene	0			1.3E+02	1.4E+02			1.3E+02	1.4E+02											1.3E+02	1.4E+02
Fluorene	0			1.1E+03	5.3E+03			1.1E+03	5.3E+03											1.1E+03	5.3E+03
Foaming Agents	0			5.0E+02				5.0E+02												5.0E+02	
Guthion	0		1.0E-02	0.02102			1.0E-02	0.02102											1.0E-02	0.0L10L	_
Heptachlor ^C	0	5.2E-01	3.8E-03	7.9E-04	7.9E-04	5.2E-01	3.8E-03	7.9E-04	7.9E-04									5.2E-01	3.8E-03	7.9E-04	7.9E-04
Heptachlor Epoxide ^C	0	5.2E-01	3.8E-03	3.9E-04	3.9E-04	5.2E-01	3.8E-03	3.9E-04	3.9E-04		_							5.2E-01	3.8E-03	3.9E-04	3.9E-04
Hexachlorobenzene ^C	0	J.ZL-01	3.0L-03	2.8E-03	2.9E-03	J.ZL-01	J.0L-03	2.8E-03	2.9E-03									J.ZL-01	J.UL-UJ	2.8E-03	2.9E-03
Hexachlorobutadiene ^C																			-		
Hexachlorocyclohexane	0			4.4E+00	1.8E+02			4.4E+00	1.8E+02		-							_	-	4.4E+00	1.8E+02
Alpha-BHC ^C Hexachlorocyclohexane	0			2.6E-02	4.9E-02			2.6E-02	4.9E-02		-							-	-	2.6E-02	4.9E-02
Beta-BHC ^C Hexachlorocyclohexane	0			9.1E-02	1.7E-01			9.1E-02	1.7E-01									-	-	9.1E-02	1.7E-01
Gamma-BHC ^C (Lindane)	0	9.5E-01		9.8E-01	1.8E+00	9.5E-01		9.8E-01	1.8E+00									9.5E-01		9.8E-01	1.8E+00
Hexachlorocyclopentadiene	0			4.0E+01	1.1E+03			4.0E+01	1.1E+03									-		4.0E+01	1.1E+03
Hexachloroethane ^C	0			1.4E+01	3.3E+01			1.4E+01	3.3E+01											1.4E+01	3.3E+01
Hydrogen Sulfide	0		2.0E+00				2.0E+00												2.0E+00		-
Indeno (1,2,3-cd) pyrene ^C	0			3.8E-02	1.8E-01			3.8E-02	1.8E-01											3.8E-02	1.8E-01
Iron	0			3.0E+02				3.0E+02												3.0E+02	
Isophorone ^C	0			3.5E+02	9.6E+03			3.5E+02	9.6E+03											3.5E+02	9.6E+03
Kepone	0		0.0E+00				0.0E+00												0.0E+00		_
Lead	0	2.0E+01	2.3E+00	1.5E+01		2.0E+01	2.3E+00	1.5E+01										2.0E+01	2.3E+00	1.5E+01	
Malathion	0		1.0E-01				1.0E-01												1.0E-01		
Manganese	0			5.0E+01				5.0E+01												5.0E+01	
Mercury	0	1.4E+00	7.7E-01			1.4E+00	7.7E-01											1.4E+00	7.7E-01		
Methyl Bromide	0			4.7E+01	1.5E+03			4.7E+01	1.5E+03											4.7E+01	1.5E+03
Methylene Chloride ^C	0			4.6E+01	5.9E+03			4.6E+01	5.9E+03		_									4.6E+01	5.9E+03
Methoxychlor	0		3.0E-02	1.0E+02	J.9L+03		3.0E-02	1.0E+02	J.JL+03		-		-						3.0E-02	1.0E+02	J.JL+03
Mirex	0			1.02+02				1.02+02											0.0E+00	1.0E+02	_
	-		0.0E+00			 	0.0E+00						-								
Nickel	0	5.6E+01	6.3E+00	6.1E+02	4.6E+03	5.6E+01	6.3E+00	6.1E+02	4.6E+03									5.6E+01	6.3E+00	6.1E+02	4.6E+03
Nitrate (as N)	0			1.0E+04				1.0E+04												1.0E+04	
Nitrobenzene	0			1.7E+01	6.9E+02			1.7E+01	6.9E+02										-	1.7E+01	6.9E+02
N-Nitrosodimethylamine ^C	0			6.9E-03	3.0E+01			6.9E-03	3.0E+01											6.9E-03	3.0E+01
N-Nitrosodiphenylamine ^C	0			3.3E+01	6.0E+01			3.3E+01	6.0E+01									-	-	3.3E+01	6.0E+01
N-Nitrosodi-n-propylamine ^C	0			5.0E-02	5.1E+00			5.0E-02	5.1E+00											5.0E-02	5.1E+00
Nonylphenol	0	2.8E+01	6.6E+00			2.8E+01	6.6E+00											2.8E+01	6.6E+00		-
Parathion	0	6.5E-02	1.3E-02			6.5E-02	1.3E-02											6.5E-02	1.3E-02	-	-
PCB Total ^C	0		1.4E-02	6.4E-04	6.4E-04		1.4E-02	6.4E-04	6.4E-04									-	1.4E-02	6.4E-04	6.4E-04
Pentachlorophenol ^C	0	4.3E+00	3.3E+00	2.7E+00	3.0E+01	4.3E+00	3.3E+00	2.7E+00	3.0E+01									4.3E+00	3.3E+00	2.7E+00	3.0E+01
Phenol	0			1.0E+04	8.6E+05			1.0E+04	8.6E+05									-	-	1.0E+04	8.6E+05
Pyrene	0			8.3E+02	4.0E+03			8.3E+02	4.0E+03									-	-	8.3E+02	4.0E+03
Radionuclides	0																	-	-		-
Gross Alpha Activity (pCi/L) Beta and Photon Activity	0			1.5E+01	-			1.5E+01			-							-		1.5E+01	-
(mrem/yr)	0			4.0E+00				4.0E+00												4.0E+00	_
Radium 226 + 228 (pCi/L)	0			5.0E+00				5.0E+00												5.0E+00	_
Uranium (ug/l)	0			3.0E+01				3.0E+01												3.0E+01	_
- /aa (ag/1)	J	-		J.ULTU1				J.ULTU1									-3		-	J.UETU I	-

Parameter	Background		Water Qua	ality Criteria			Wasteload	d Allocations	i		Antidegrada	tion Baseline		А	ntidegradat	ion Allocations			Most Limitin	g Allocations	
(ug/l unless noted)	Conc.	Acute	Chronic	HH (PWS)	НН	Acute	Chronic	HH (PWS)	НН	Acute	Chronic	HH (PWS)	НН	Acute	Chronic	HH (PWS)	НН	Acute	Chronic	HH (PWS)	НН
Selenium, Total Recoverable	0	2.0E+01	5.0E+00	1.7E+02	4.2E+03	2.0E+01	5.0E+00	1.7E+02	4.2E+03									2.0E+01	5.0E+00	1.7E+02	4.2E+03
Silver	0	3.2E-01				3.2E-01												3.2E-01	-		-
Sulfate	0			2.5E+05				2.5E+05											-	2.5E+05	-
1,1,2,2-Tetrachloroethane ^C	0			1.7E+00	4.0E+01			1.7E+00	4.0E+01										-	1.7E+00	4.0E+01
Tetrachloroethylene ^C	0			6.9E+00	3.3E+01			6.9E+00	3.3E+01											6.9E+00	3.3E+01
Thallium	0			2.4E-01	4.7E-01			2.4E-01	4.7E-01										-	2.4E-01	4.7E-01
Toluene	0			5.1E+02	6.0E+03			5.1E+02	6.0E+03										-	5.1E+02	6.0E+03
Total dissolved solids	0			5.0E+05				5.0E+05											-	5.0E+05	
Toxaphene ^C	0	7.3E-01	2.0E-04	2.8E-03	2.8E-03	7.3E-01	2.0E-04	2.8E-03	2.8E-03									7.3E-01	2.0E-04	2.8E-03	2.8E-03
Tributyltin	0	4.6E-01	7.2E-02			4.6E-01	7.2E-02											4.6E-01	7.2E-02		
1,2,4-Trichlorobenzene	0			3.5E+01	7.0E+01			3.5E+01	7.0E+01											3.5E+01	7.0E+01
1,1,2-Trichloroethane ^C	0			5.9E+00	1.6E+02			5.9E+00	1.6E+02											5.9E+00	1.6E+02
Trichloroethylene ^C	0			2.5E+01	3.0E+02			2.5E+01	3.0E+02										-	2.5E+01	3.0E+02
2,4,6-Trichlorophenol ^C	0			1.4E+01	2.4E+01			1.4E+01	2.4E+01										-	1.4E+01	2.4E+01
2-(2,4,5-Trichlorophenoxy) propionic acid (Silvex)	0			5.0E+01				5.0E+01											_	5.0E+01	-
Vinyl Chloride ^C	0			2.5E-01	2.4E+01			2.5E-01	2.4E+01										-	2.5E-01	2.4E+01
Zinc	0	3.6E+01	3.6E+01	7.4E+03	2.6E+04	3.6E+01	3.6E+01	7.4E+03	2.6E+04									3.6E+01	3.6E+01	7.4E+03	2.6E+04

Notes:

- 1. All concentrations expressed as micrograms/liter (ug/l), unless noted otherwise
- 2. Discharge flow is highest monthly average or Form 2C maximum for Industries and design flow for Municipals
- 3. Metals measured as Dissolved, unless specified otherwise
- 4. "C" indicates a carcinogenic parameter
- Regular WLAs are mass balances (minus background concentration) using the % of stream flow entered above under Mixing Information. Antidegradation WLAs are based upon a complete mix.
- 6. Antideg. Baseline = (0.25(WQC background conc.) + background conc.) for acute and chronic
 - = (0.1(WQC background conc.) + background conc.) for human health
- 7. WLAs established at the following stream flows: 1Q10 for Acute, 30Q10 for Chronic Ammonia, 7Q10 for Other Chronic, 30Q5 for Non-carcinogens and Harmonic Mean for Carcinogens. To apply mixing ratios from a model set the stream flow equal to (mixing ratio 1), effluent flow equal to 1 and 100% mix.

Metal	Target Value (SSTV)	Note: do not use QL's lower than the
Wictai	raiget value (SSTV)	Note. do not use QL's lower than the
Antimony	5.6E+00	minimum QL's provided in agency
Arsenic	1.0E+01	guidance
Barium	2.0E+03	
Cadmium	2.3E-01	
Chromium III	1.4E+01	
Chromium VI	6.4E+00	
Copper	1.5E+00	
Iron	3.0E+02	
Lead	1.4E+00	
Manganese	5.0E+01	
Mercury	4.6E-01	
Nickel	3.8E+00	
Selenium	3.0E+00	
Silver	1.3E-01	
Zinc	1.4E+01	

page 4 of 4 VA0006254_MSTRANTI.xlsx - Freshwater WLAs 2/23/2016 - 3:13 PM

2/4/2016 12:46:50 PM

Facility = Addison-Evans
Chemical = Ammonia
Chronic averaging period = 30
WLAa = 52
WLAc = 2.56
Q.L. = 0.2
samples/mo. = 1
samples/wk. = 1

Summary of Statistics:

observations = 1

Expected Value = .45

Variance = .0729

C.V. = 0.6

97th percentile daily values = 1.09503

97th percentile 4 day average = .748705

97th percentile 30 day average = .542723

< Q.L. = 0

Model used = BPJ Assumptions, type 2 data

No Limit is required for this material

The data are:

0.45

1/13/2016 1:14:48 PM

Facility = Addison-Evans
Chemical = TRC
Chronic averaging period = 4
WLAa = 19
WLAc = 11
Q.L. = 100
samples/mo. = 1
samples/wk. = 1

Summary of Statistics:

observations = 1

Expected Value = 20000

Variance = 1440000

C.V. = 0.6

97th percentile daily values = 48668.3

97th percentile 4 day average = 33275.8

97th percentile 30 day average = 24121.0

< Q.L. = 0

Model used = BPJ Assumptions, type 2 data

A limit is needed based on Chronic Toxicity
Maximum Daily Limit = 16.0883226245855
Average Weekly limit = 16.0883226245856
Average Monthly Llmit = 16.0883226245856

The data are:

20000

ATTACHMENT G

Threatened and Endangered Species Coordination

VPDES PERMITS

Threatened and Endangered Species Coordination

To: DGIF, Environmental Review Coordinator DCR USFWS, T/E Review Coordinator From: Brian Wrenn, Piedmont Regional Office	Date Sent: 12/7/2015 Permit Number: VA0006254
Facility Name: Addison-Evans Water Production	Location:
and Laboratory Contact: David Sirois Phone: 804-318-8140	USGS Quadrangle: Hallsboro
Address: 13400 Hull Street Road, Chesterfield County	Latitude/Longitude: 37°24'57" -77°38'43"
	Receiving Stream: Swift Creek below the dam
	Receiving Stream Flow Statistics used for Permit:
	See Attachment A
Effluent Characteristics and Max Daily Flow: 0.500 MGD, water treatment wastewater limited for pH, TSS, TRC	Species Search Results (or attach database report and map):
	See attached map and species list

Attach draft permit effluent limits page if available or attach existing effluent limits page (make sure it is clear in your email which one it is – draft current or existing).

DGIF email: <u>Gladys.Cason@dgif.virginia.gov</u> USFWS email: <u>margaret_byrne@fws.gov</u>

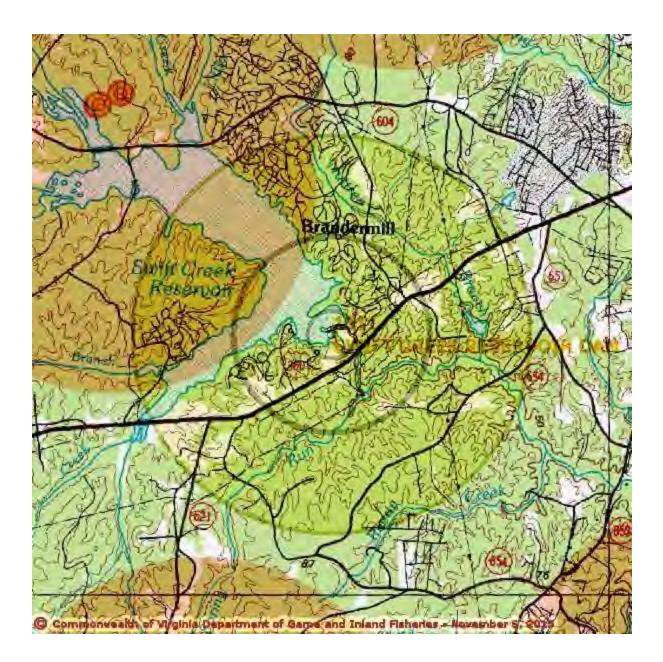
DCR: If Natural Heritage Data Explorer (NHDE) has the needed information DCR does not need this form. If you have additional information you wish to add, you may do so in the comments field on the NHDE form. DCR will contact you directly if they need more information.

Attachment A

1Q30 = 0.00 cfs (0.000 MGD) 1Q10 = 0.00 cfs (0.000 MGD) 7Q10 = 0.00 cfs (0.000 MGD) 30Q10 = 0.00 cfs (0.000 MGD) 30Q5 = 0.00 cfs (0.000 MGD) HM = undefined

Swift Creek below the dam. Swamps and lakes considered 0 flow.

VaFWIS Initial Project Assessment Report Compiled on 11/6/2015, 2:42:52 PM


Help

Known or likely to occur within a 2 mile radius around point 37,24,58.6 -77,38,53.9 in 041 Chesterfield County, VA

View Map of Site Location

452 Known or Likely Species ordered by Status Concern for Conservation (displaying first 23) (23 species with Status* or Tier I** or Tier II**)

BOVA Code	Status*		Common Name	Scientific Name	Confirmed	Database(s)
010032	FESE	II	Sturgeon, Atlantic	Acipenser oxyrinchus		BOVA
050022	FT		Bat, northern long- eared	Myotis septentrionalis		BOVA
040096	ST	Ι	Falcon, peregrine	Falco peregrinus		BOVA
040129	ST	Ι	Sandpiper, upland	Bartramia longicauda		BOVA
040293	ST	Ι	Shrike, loggerhead	Lanius ludovicianus		BOVA
020002	ST	II	Treefrog, barking	Hyla gratiosa		BOVA
040292	ST		Shrike, migrant loggerhead	Lanius ludovicianus migrans		BOVA
040093	FS	II	Eagle, bald	Haliaeetus leucocephalus		BOVA
060029	FS	III	Lance, yellow	Elliptio lanceolata	Yes	BOVA,SppObs
010038	FS	IV	Alewife	Alosa pseudoharengus		BOVA
100001	FS	IV	fritillary, Diana	Speyeria diana		BOVA
010045	FS		Herring, blueback	Alosa aestivalis		BOVA
030063	CC	III	Turtle, spotted	Clemmys guttata		BOVA
010077		Ι	Shiner, bridle	Notropis bifrenatus		BOVA
040225		I	Sapsucker, yellow- bellied	Sphyrapicus varius		BOVA
040319		Ι	Warbler, black- throated green	Dendroica virens		BOVA
040052		II	Duck, American black	Anas rubripes		BOVA
040029		II	Heron, little blue	Egretta caerulea caerulea		BOVA
040036		II	Night-heron, yellow-crowned	Nyctanassa violacea violacea		BOVA
040213		II	Owl, northern saw- whet	Aegolius acadicus		BOVA
040105		II	Rail, king	Rallus elegans		BOVA
040320		II	Warbler, cerulean	Dendroica cerulea		BOVA

		I .		I	
040266	II	Wren, winter	Troglodytes troglodytes		BOVA

To view All 452 species View 452

* FE=Federal Endangered; FT=Federal Threatened; SE=State Endangered; ST=State Threatened; FC=Federal Candidate; FS=Federal Species of Concern; CC=Collection Concern

** I=VA Wildlife Action Plan - Tier I - Critical Conservation Need; II=VA Wildlife Action Plan - Tier II - Very High Conservation Need; III=VA Wildlife Action Plan - Tier III - High Conservation Need; IV=VA Wildlife Action Plan - Tier IV - Moderate Conservation Need

Bat Colonies or Hibernacula: Not Known

Anadromous Fish Use Streams

N/A

Colonial Water Bird Survey

N/A

Threatened and Endangered Waters

N/A

Managed Trout Streams

N/A

Bald Eagle Concentration Areas and Roosts

N/A

Bald Eagle Nests

N/A

Habitat Predicted for Aquatic WAP Tier I & II Species

N/A

Habitat Predicted for Terrestrial WAP Tier I & II Species

N/A

Public Holdings:

N/A

 $Compiled \ on \ 11/6/2015, \ 2:42:56 \ PM \quad I690781.0 \quad report=IPA \quad search Type=R \quad dist= \ 3218 \ poi= \ 37,24,58.6 \ -77,38,53.9 \ and \ report=IPA \quad report=IPA \quad report=IPA \ report$

 $PixelSize=64; Anadromous=0.195328; BECAR=0.175283; Bats=0.154318; Buffer=0.09992; County=1.057005; Impediments=0.205441; Init=1.121106; PublicLands=0.262214; SppObs=1.269642; TEWaters=0.189964; TierReaches=0.206657; TierTerrestrial=0.670275; Total=19.321785; Tracking_BOVA=13.571728; Trout=0.177551$

Wrenn, Brian (DEQ)

From: nhreview (DCR)

Sent: Thursday, December 03, 2015 2:15 PM

To: Wrenn, Brian (DEQ)

Subject: VA0006254, Addison Evans Water Production and Laboratory

Attachments: 70041, DEQ VA0006254, Addison-Evans Water Production and Laboratory.pdf

Mr. Wrenn,

Please find attached the DCR-DNH comments for the above referenced project. The comments are in pdf format and can be printed for your records. Also species rank information is available at http://www.dcr.virginia.gov/natural-heritage/help for your reference.

Please note an updated information services order form is located on the Natural Heritage website at: http://www.dcr.virginia.gov/natural-heritage/nhserviceform/?non-fee

Please send a confirmation e-mail upon receipt of our comments. Let us know if you have any questions.

Thank you for your request.

Alli Baird, CLA, ASLA
VADCR - Division of Natural Heritage
600 East Main Street, 24th Floor
Richmond, VA 23219
804-692-0984
alice.baird@dcr.virginia.gov

Molly Joseph Ward Secretary of Natural Resources

Clyde E. Cristman

Joe Elton

Deputy Director of Operations

Rochelle Altholz Deputy Director of Administration and Finance

David Dowling Deputy Director of Soil and Water and Dam Safety

December 3, 2015

Brian Wrenn DEQ-PRO 4949-A Cox Road Glen Allen, VA 23060

Re: VA0006254, Addison-Evans Water Production and Laboratory

Dear Mr. Wrenn:

The Department of Conservation and Recreation's Division of Natural Heritage (DCR) has searched its Biotics Data System for occurrences of natural heritage resources from the area outlined on the submitted map. Natural heritage resources are defined as the habitat of rare, threatened, or endangered plant and animal species, unique or exemplary natural communities, and significant geologic formations.

According to the information currently in our files, the Swift Creek Reservoir Stream Conservation Unit (SCU) is located within the project site. SCUs identify stream reaches that contain aquatic natural heritage resources, including 2 miles upstream and 1 mile downstream of documented occurrences, and all tributaries within this reach. SCUs are given a biodiversity significance ranking based on the rarity, quality, and number of element occurrences they contain; on a scale of 1-5, 1 being most significant. The Swift Creek Reservoir SCU has been given a biodiversity ranking of B3, which represents a site of high significance. The natural heritage resource associated with this site is:

Elliptio lanceolata

Yellow Lance

G2G3/S2S3/SOC/NL

The Yellow lance occurs in mid-sized rivers and second and third order streams. To survive, it needs a silt-free, stable streambed and well-oxygenated water that is free of pollutants. This species has been the subject of taxonomic debate in recent years (NatureServe, 2009). Currently in Virginia, the Yellow lance is recognized from populations in the Chowan, James, York, and Rappahannock, drainages and its range extends into Neuse-Tar river system in North Carolina. In recent years, significant population declines have been noted across its range (NatureServe, 2009). Please note that this species is currently classified as a species of concern by the United States Fish and Wildlife Service (USFWS); however, this designation has no official legal status.

Considered good indicators of the health of aquatic ecosystems, freshwater mussels are dependent on good water quality, good physical habitat conditions, and an environment that will support populations of host fish species (Williams et al., 1993). Because mussels are sedentary organisms, they are sensitive to water quality degradation related to increased sedimentation and pollution. They are also sensitive to habitat destruction through dam construction, channelization, and dredging, and the invasion of exotic mollusk species. The Yellow lance may be particularly sensitive to chemical pollutants and exposure to fine sediments from erosion (NatureServe, 2009).

To minimize impacts to aquatic resources, DCR recommends the use of uv/ozone to replace chlorination disinfection and utilization of new technologies as they become available to improve water quality. DCR supports a no mixing zone.

Under a Memorandum of Agreement established between the Virginia Department of Agriculture and Consumer Services (VDACS) and the DCR, DCR represents VDACS in comments regarding potential impacts on statelisted threatened and endangered plant and insect species. The current activity will not affect any documented state-listed plants or insects.

There are no State Natural Area Preserves under DCR's jurisdiction in the project vicinity.

New and updated information is continually added to Biotics. Please re-submit project information and map for an update on this natural heritage information if the scope of the project changes and/or six months has passed before it is utilized.

The Virginia Department of Game and Inland Fisheries (VDGIF) maintains a database of wildlife locations, including threatened and endangered species, trout streams, and anadromous fish waters that may contain information not documented in this letter. Their database may be accessed from http://vafwis.org/fwis/ or contact Ernie Aschenbach at 804-367-2733 or Ernie.Aschenbach@dgif.virginia.gov.

Should you have any questions or concerns, feel free to contact me at (804) 692-0984. Thank you for the opportunity to comment on this project.

Sincerely,

Alli Baird, LA, ASLA

III; Baird

Coastal Zone Locality Liaison

Cc: Troy Andersen, USFWS

Literature Cited

NatureServe. 2009. NatureServe Explorer: An online encyclopedia of life [web application]. Version 7.1. NatureServe, Arlington, Virginia. Available http://www.natureserve.org/explorer. (Accessed: April 5, 2010).

Williams, J.D., M.L. Warren, Jr., K.S. Cummings, J.L. Harris, and R.J. Neves. 1993. Conservation status of freshwater mussels of the United States and Canada. Fisheries 18: 6-9.

ATTACHMENT H

Groundwater Report and Evaluation

Permit No. VA0006254 Groundwater Data Evaluation Page 1 of 5

MEMORANDUM

DEPARTMENT OF ENVIRONMENTAL QUALITY Piedmont Regional Office

4949-A Cox Road, Glen Allen, Virginia 23060-6295

804/527-5020

TO: File

FROM: Brian Wrenn DATE: March 15, 2016

SUBJECT: VPDES No. VA0006254 - Addison-Evans Water Production and Laboratory; Groundwater Monitoring

Data Evaluation

Background

Addison-Evans Water Production and Laboratory is located at 13400 Hull Street Road in Chesterfield County, Virginia. The facility withdraws and treats water from the Swift Creek Reservoir for distribution to Chesterfield County. Wastewater is produced from the backwash of 4 high-rate filters and from sludge removal from sedimentation basins. Wastewater flows into a three-cell sludge lagoon. The facility has a permit to discharge no more than 0.500 million gallons per day (MGD) of wastewater from the facility to a dry ditch to Swift Creek. As required by Part I.B.5 (Groundwater Monitoring) of the facility's VPDES Permit No. VA0006254, effective on April 5, 2011, the facility submitted a revised Ground Water Monitoring Plan (GWMP) on June 30, 2011 which was approved with revisions by the Department of Environmental Quality (DEQ) on August 16, 2011. The facility has submitted groundwater monitoring data in accordance with this plan to determine if system integrity is being maintained and to indicate if activities at the site are resulting in violations of the Board's Ground Water Standards.

This facility is subject to Ground Water Standards Applicable Statewide (9VAC25-280-40), Ground Water Standards Applicable by Physiographic Province for the Piedmont (9VAC25-280-50), and Ground Water criteria by Physiographic Province for the Piedmont (9VAC25-280-70).

As part of the revised GWMP, a new upgradient well (MW-4) and a new downgradient well (MW-5) were installed. The previous "upgradient" well (MW-3) was determined to be an inappropriate upgradient well. It was maintained to serve as a downgradient well. In total, the monitoring well network consists of one upgradient well and four downgradient wells. See the attached map for locations of the wells. The approved GWMP established quarterly screening for all of the monitoring wells for the following parameters: aluminum, ammonia, chloride, sulfate, total dissolved solids, total organic carbon, total suspended solids, and pH.

Fifteen (15) monitoring well samples taken from February 2012 to August 2015 were evaluated by DEQ Piedmont Regional Office (PRO) staff. Four downgradient monitoring wells (MW-1, MW-2, MW-3, and MW-5) were evaluated for statistically significant differences against the upgradient or background monitoring well (MW-4). The data sets were evaluated for normality using the Shapiro-Wilk Normality Test and the Shapiro-Wilk Log-Normality Test. Statistically significant differences of the non-normal data sets were then evaluated using the Wilcoxon Rank Sum Test, and the data sets that were determined to be normally distributed were evaluated for significance using the Cochran's Approximation to the Behrens-Fisher Student's T-test. Linear regression trends for each parameter at each monitoring well were also evaluated to determine if the respective parameter concentrations were increasing or decreasing with time. These tests were programmed into Excel by DEQ-PRO staff using formulas and descriptions set forth in EPA's Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance (EPA 530/R-09-007), revised March 2009.

Parameter-Specific Evaluation Results and Conclusions

Aluminum:

- Groundwater Standard: There is no groundwater standard or a groundwater criterion for aluminum. Aluminum
 monitoring was included in the facility's approved GWMP because the facility used aluminum sulfate (Alum) for
 many years as a coagulant in its treatment process (1967-1999); therefore, aluminum may be considered a good
 indicator pollutant for monitoring system integrity.
- <u>Significance to Background Monitoring Well MW-4</u>: MW-1, MW-2, MW-3 and MW-5 were not statistically different from MW-4.
- <u>Linear Regression Trend</u>: MW-4 showed a slight decrease in concentration over time. MW-2 and MW-3 showed
 a slight increase in concentrations over time. However this increase is based on one observable value for MW-2
 and two observable values for MW-3 out of fifteen sampling events. MW-1 and MW-5 showed no trend.
 Moderately weak degrees of data linearity were demonstrated for MW-4 and MW-2 and a very weak degree of
 linearity for MW-3. See Table 1 for details.

Table 1

Monitoring Well	Pearson Correlation (R)	Linear Trend	Degree of Linearity
MW-4	-0.43	Slight Decrease	Moderately Weak
MW-1		No Trend, Neutral Slope	
MW-2	0.37	Slight Increase	Moderately Weak
MW-3	0.17	Slight Increase	Very Weak
MW-5		No Trend, Neutral Slope	-

• <u>Conclusions</u>: Given that there is neither a groundwater standard nor criterion for aluminum and that MW-2 and MW-3 data sets were not statistically different from the ambient MW-4 data set, no corrective action is warranted for this parameter.

Ammonia:

- <u>Groundwater Standard:</u> The groundwater standard for ammonia is 0.025 mg/L in the Piedmont Physiographic Province. Observed values in MW-1, MW-2 MW-3 and MW-5 exceeded the groundwater standard for ammonia.
- Significance to Background Monitoring Well MW-4: MW-1 and MW-3 were statistically different from MW-4.
- <u>Linear Regression Trend:</u> MW-1, MW-3, and MW-5 showed a slight increase in concentration over time while MW-2 showed a slight decrease. MW-4 showed a neutral slope indicating neither an increase nor decrease over time. MW-1 and MW-2 demonstrated a very weak degree of linearity while MW-3 demonstrated a moderately strong degree of linearity and MW-5 demonstrated a moderately weak degree of linearity. See Table 2 for details.

Table 2

	Monitoring Well	Pearson Correlation (R)	R) Linear Trend Degree of Li		
Ī	MW-4		No Trend, Neutral Slope		
Ī	MW-1	0.18	Slight Increase	Very Weak	
	MW-2	-0.06	Slight Decrease	Very Weak	
Ī	MW-3	0.70	Slight Increase	Moderately Strong	
Γ	MW-5	0.35	Slight Increase	Moderately Weak	

<u>Conclusions:</u> Because all observed concentrations exceeded the groundwater standard for ammonia, MW-1 and MW-3 showed a statistically significant difference from MW-4, and the concentrations for MW-1, MW-3, and MW-5 are increasing slightly over time, corrective action is warranted for this parameter.

Chloride:

- <u>Groundwater Criteria:</u> The groundwater criterion for chloride is in 25 mg/L in the Piedmont Physiographic Province. Observed concentrations in MW-5 exceeded the groundwater standard.
- <u>Significance to Background Monitoring Well MW-4:</u> MW-1, MW-2, MW-3, and MW5 are statistically different from MW-4
- <u>Linear Regression Trend:</u> MW-5 showed a slight increase in concentration over time while the remaining monitoring wells showed a slight decrease. MW-1, MW-3, MW-4, and MW-5 demonstrated moderately weak degrees of linearity and MW-2 demonstrated a very weak degree of linearity.

Table 3

Monitoring Well	Pearson Correlation (R)	Linear Trend	Degree of Linearity
MW-4	-0.30	Slight Decrease	Moderately Weak
MW-1	-0.37	Slight Decrease	Moderately Weak

MW-2	-0.17	Slight Decrease	Very Weak
MW-3	-0.42	Slight Decrease	Moderately Weak
MW-5	0.34	Slight Increase	Moderately Weak

• <u>Conclusions:</u> Because MW-5 concentrations exceeded the groundwater criteria for chloride, MW-1, MW-2, MW-3, and MW-5 showed a statistically significant difference from MW-4, and the concentrations in MW-5 are increasing over time, corrective action is warranted for this parameter.

Sulfate:

- Groundwater Criteria: The groundwater criterion for sulfate is 25 mg/L in the Piedmont Physiographic Province. Sulfate monitoring was also included in the facility's approved GWMP because the facility uses aluminum sulfate (Alum) as a coagulant in its treatment process; therefore, sulfate may be considered a possible indicator for monitoring system integrity. Exceedances of the sulfate criteria were observed in MW-3 and MW-5. Over 93% of the samples taken from MW-3 and MW-5 had concentrations above the criteria.
- <u>Significance to Background Monitoring Well MW-4</u>: MW-1 and MW-2 data were not significantly different from MW-4 data. However, MW-3 and MW-5 data were significantly different from MW-4.
- <u>Linear Regression Trend</u>: MW-2, MW-3, and MW-4 showed a slight decrease in concentrations over time while MW-1 and MW-5 showed a slight increase over time. The degree of data linearity was very weak for MW-1, MW-2, and MW-4, moderately weak for MW-3 and moderately strong for MW-5. See Table 4 for details.

Table 4

Monitoring Well	Pearson Correlation (R)	Linear Trend	Degree of Linearity
MW-4	-0.11	Slight Decrease	Very Weak
MW-1	0.07	Slight Increase	Very Weak
MW-2	-0.25	Slight Decrease	Very Weak
MW-3	0.37	Slight Increase	Moderately Weak
MW-5	-0.51	Slight Decrease	Moderately Strong

• <u>Conclusions</u>: Because MW-3 and MW-5 concentrations exceeded the groundwater criteria for sulfate, MW-3 and MW-5 showed a statistically significant difference from MW-4, and the concentrations in MW-1 and MW-3 are increasing over time, corrective action is warranted for this parameter.

Total Dissolved Solids (TDS):

- <u>Groundwater Criteria:</u> The groundwater criterion for TDS is 250 mg/L in the Piedmont Physiographic Province. All of the samples analyzed from MW-1, MW-2, and MW-5 exceeded the groundwater criterion for TDS. Sixty percent of the samples from MW3 exceeded the criterion.
- <u>Significance to Background Monitoring Well MW-4:</u> MW-1, MW-2, MW-3, and MW-5 showed statistically significant differences from MW-4.
- <u>Linear Regression Trend:</u> MW-1, MW-2, MW-3, and MW-5 showed a slight increase in concentration over time while MW-4 showed a slight decrease. The degree of linearity is very weak for MW-1, moderately weak for MW-3 and MW-4, and moderately strong for MW-2 and MW-5. See Table 5 for details.

Table 5

Monitoring Well	Pearson Correlation (R)	Linear Trend	Degree of Linearity	
MW-4	-0.45 Slight Decrease		Moderately Weak	
MW-1	0.18 Slight Increase Very		Very Weak	
MW-2	0.63 Slight Increase Modera		Moderately Strong	
MW-3	0.42 Slight Increase		Moderately Weak	
MW-5	- J · · · · · · · ·		Moderately Strong	

<u>Conclusions:</u> Because MW-1, MW-2, MW-3, and MW-5 concentrations exceeded the groundwater criteria for TDS, MW-1, MW-2, MW-3 and MW-5 showed a statistically significant difference from MW-4, and the concentrations in MW-1, MW-2, MW-3, and MW-5 are increasing over time, corrective action is warranted for this parameter.

Total Organic Carbon (TOC):

• <u>Groundwater Criteria:</u> The groundwater criterion for TOC is 10 mg/L in the Piedmont Physiographic Province. All of the samples analyzed for MW-1 exceeded the groundwater criterion for TOC. Over 13% of the samples analyzed for MW-3 exceeded the criterion.

- <u>Significance to Background Monitoring Well MW-4:</u> MW-1, MW-2,MW-3, and MW-5 showed statistically significant differences from MW-4.
- <u>Linear Regression Trend:</u> MW-1, MW-2, and MW-5 showed slight increases in concentration over time while MW-3 and MW-4 showed slight decreases. The degree of linearity is very weak for MW-3 and MW-4, moderately weak for MW-1 and MW-5, and moderately strong for MW-2. See Table 6 for details.

Table 6

Monitoring Well	Pearson Correlation (R)	Linear Trend	Degree of Linearity	
MW-4	-0.22	Slight Decrease	Very Weak	
MW-1	0.26	Slight Increase	Moderately Weak	
MW-2	0.61	Slight Increase	Moderately Strong	
MW-3	-0.10	Slight Decrease	Very Weak	
MW-5	0.35	Slight Increase	Moderately Weak	

• <u>Conclusions:</u> Because MW-1 and MW-3 concentrations exceeded the groundwater criteria for TOC, MW-1 MW-2, MW-3, and MW-5 showed a statistically significant difference from MW-4, and the concentrations in MW-1, MW-2, and MW-5 are increasing over time, corrective action is warranted for this parameter.

Total Suspended Solids (TSS):

- Groundwater Standard/Criteria: No groundwater standards or criteria exist for TSS.
- <u>Significance to Background Monitoring Well MW-4:</u> None of the data from the monitoring wells was significantly different from MW-4.
- <u>Linear Regression Trend:</u> MW-1, MW-2, MW-4, and MW-5 showed slight decreases in concentration over time while MW-3 showed a slight increase. The degree of linearity was very weak for MW-1 and MW-3, moderately weak for MW-2 and MW-5, and moderately strong for MW-4. See Table 7 for details.

Table 7

Monitoring Well	Pearson Correlation (R)	Linear Trend	Degree of Linearity
MW-4	-0.58	Slight Decrease	Moderately Strong
MW-1	-0.12	Slight Decrease	Very Weak
MW-2	-0.32	Slight Decrease	Moderately Weak
MW-3	0.11	Slight Increase	Very Weak
MW-5	-0.49	Slight Decrease	Moderately Weak

• <u>Conclusions:</u> Given that there is no groundwater standard or criterion for TSS, none of the monitoring wells were significantly different from MW-4, and only MW-3 showed a slight increase in concentration over time, no corrective action is warranted for this parameter.

pH:

- <u>Groundwater Standard</u>: The pH Groundwater Standard is 5.5 8.5 standard units (S.U.) for the Piedmont Physiographic Province. None of the samples analyzed exceeded the pH standards.
- <u>Significance to Background Monitoring Well MW-4</u>: Data sets from MW-1 and MW-2 were statistically different than the MW-4 data set.
- <u>Linear Regression Trend</u>: MW-1 and MW-2 showed a slight increase in concentration over time while MW-3, MW-4, and MW-5 showed a slight decrease.

Table 8

Monitoring Well	R²	Linear Trend	Degree of Linearity
MW-4	0.56 Slight Decrease Mod		Moderately Strong
MW-1	0.01	Slight Increase	Very Weak
MW-2	0.05	05 Slight Increase Very V	
MW-3	0.003	Slight Decrease	Very Weak
MW-5	0.11	Slight Decrease	Very Weak

• <u>Conclusions</u>: Given that MW-1 and MW-2 are significantly different from MW-4, and that MW-1 and MW-2 are increasing while MW-4 is decreasing, corrective action is warranted for this parameter.

Permit No. VA0006254 Groundwater Data Evaluation Page 5 of 5

Recommendation:

The continuation of quarterly monitoring and reporting of groundwater sampling at MW-1, MW-2, MW-3, MW-4, and MW-5 is recommended for aluminum, ammonia, chloride, sulfate, TDS, TOC, TSS, and pH. Corrective action is warranted for ammonia, chloride, sulfate, TDS, TOC, and pH.

Groundwater Monitoring Data Analysis (v.3)

Facility Name:	Addison-Evans
Permit No.:	VA0006254
Monitoring Parameter:	Aluminum
Applicable GW Standard (if none leave blank):	
Applicable GW Criteria (if none leave blank):	
Concentration Units (all data):	mg/L

				Data	Entry		
	Well Designation ▶	MW4	MW1	MW2	MW3	MW5	
	Sample or Report	Background	Compliance	Compliance	Compliance	Compliance	Compliance
	Date (ascending)	Well Data	Well #1	Well #2	Well #3	Well #4	Well #5
1	2/15/2012	0.1	0	0	0	0	
2	5/17/2012	0	0	0	0	0	
3	8/15/2012	0	0	0	0	0	
4	11/27/2012	0	0	0	0	0	
5	2/19/2013	0.06	0	0	0	0	
6	5/20/2013	0	0	0	0.14	0	
7	8/26/2013	0	0	0	0	0	
8	11/13/2013	0	0	0	0	0	
	2/12/2014	0.055	0	0	0	0	
10 11	5/14/2014 8/14/2014	0	0	0	0	0	
12	11/12/2014	0	0	0	0	0	
13	2/11/2015	0	0	0	0.173	0	
14	5/13/2015	0	0	0.053	0.173	0	
15	8/13/2015	0	0	0.055	0	0	
16	0/10/2010		Ů	Ů	Ů	- 0	
17							
18							
19							
20							
21							
22							
23							
24							
25 26							
27							
28							
29							
30							
31							
32							
33							
34							
35 36							
37							
38							
39							
40							
41							
42							
43							
44							
45							
46							
47							
48 49							
50							

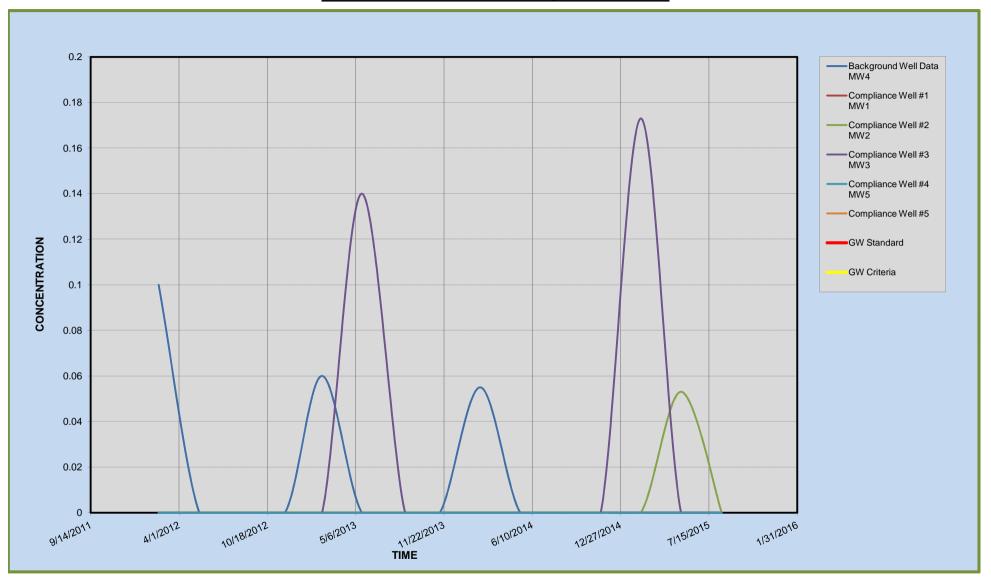
Results: S	Significance to	Background **
------------	-----------------	---------------

		Distributi	ion Tests	Non-normal Test	Normal Tests	
		Shapiro-Wilk Normality Test	Shapiro-Wilk Log- Normality Test			T-test (lognormal)
MW4	Background Well	Not normal		N/A		
MW1	Compliance Well #1			Not Significant	Not Significant	
MW2	Compliance Well #2	Not normal		Not Significant	nificant Not Significant	
MW3	Compliance Well #3	Not normal		Not Significant	Not Significant	
MW5	Compliance Well #4			Not Significant	Not Significant	
	Compliance Well #5					

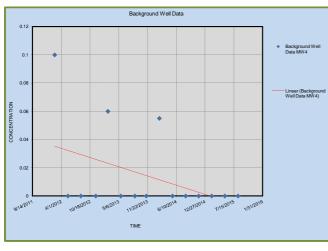
Please note that the above cells will appear blank in cases where a test cannot be conducted due to lack of data, or if the test assumptions are invalid due to lack of data variation.

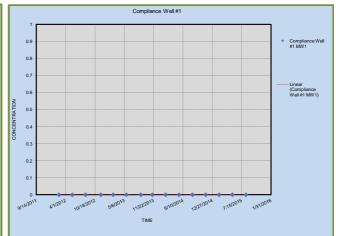
Results: Linear Regression Trend Analysis and Interpretation of Data

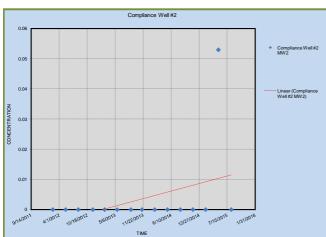
		Regression Line Pearson Interpretation				
		Slope	Correlation (R)	Linear Trend	Degree of Data Linearity	
MW4	Background Well	-3.26861E-05	-0.42622698	Slight Decrease	Moderately Weak	
MW1	Compliance Well #1	0		No trend, slope is neutral		
MW2	Compliance Well #2	1.25058E-05	0.370646558	Slight Increase	Moderately Weak	
MW3	Compliance Well #3	2.30667E-05	0.168812197	Slight Increase	Very Weak	
MW5	Compliance Well #4	0		No trend, slope is neutral		
	Compliance Well #5					

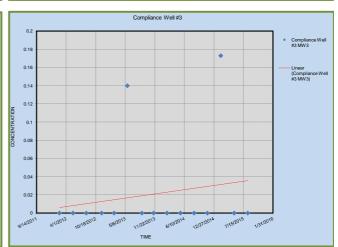

Results: Groundwater Standards/Criteria Comparison

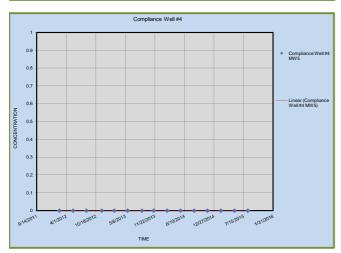
		Groundwater Standard		Groundwa	Total No. of Data	
		No. Violations of GW Standard	% Violations of GW Standard	No. Violations of GW Criteria	% Violations of GW Criteria	Points
MW4	Background Well					15
MW1	Compliance Well #1					15
MW2	Compliance Well #2					15
MW3	Compliance Well #3					15
MW5	Compliance Well #4					15
	Compliance Well #5					

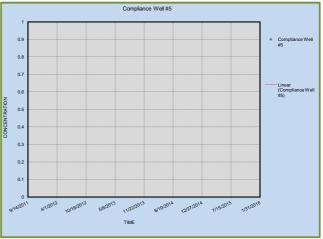

Results: Basic Statistics (less-than values ignored)


		Maximum Value	Minimum Value	Average	
MW4	Background Well	0.100	0.000	0.014	
MW1	Compliance Well #1	0.000	0.000	0.000	
MW2	Compliance Well #2	0.053	0.000	0.004	
MW3	Compliance Well #3	0.173	0.000	0.021	
MW5	Compliance Well #4	0.000	0.000	0.000	
	Compliance Well #5				


Addison-Evans: Groundwater Monitoring Data for Aluminum




Addison-Evans: Groundwater Monitoring Regression Trends for Aluminum



Groundwater Monitoring Data Analysis (v.3)

Facility Name:	Addison-Evans
Permit No.:	VA0006254
Monitoring Parameter:	Chloride
Applicable GW Standard (if none leave blank):	25
Applicable GW Criteria (if none leave blank):	
Concentration Units (all data):	mg/L

		Data Entry							
	Well Designation ▶	MW4	MW1	MW2	MW3	MW5			
	Sample or Report	Background	Compliance	Compliance	Compliance	Compliance	Compliance		
	Date (ascending)	Well Data	Well #1	Well #2	Well #3	Well #4	Well #5		
1	2/15/2012	6.5	16.1	15.7	10	23			
2	5/17/2012	7	18.3	17.6	8.5	26.7			
3	8/15/2012	5.2	17.1	16.9	9.8	34.8			
4	11/27/2012	8.4	21.8	17.3	8.6	12.2			
5	2/19/2013	4.6	14.6	18	7.3	13.4			
6	5/20/2013	6.4	14.7	16.9	7.4	15.2			
7	8/26/2013	6.7	17.2	13.4	4.4	20.7			
8	11/13/2013	7.1	16	16.5	5.6	21.8			
	2/12/2014	6.4	9.9	19.3	10.8	22.4			
10	5/14/2014	4.6	11	17.6	7.9	18.6			
11	8/14/2014	4	15.8	17.5	5.4	16.3			
12	11/12/2014	4.7	16.4	17.3	8.3	34.9			
13 14	2/11/2015	5	13.4 14	6.9 17.7	5.5 7	29.9			
15	5/13/2015	6.9	17.4	17.7	7.4	35.8			
16	8/13/2015	6.3	17.4	17.6	7.4	27.3			
17									
18									
19									
20									
21									
22									
23									
24									
25									
26 27									
28									
29									
30									
31									
32									
33									
34									
35									
36									
37									
38 39									
40 41									
42									
43									
44									
45									
46									
47									
48									
49									
50									

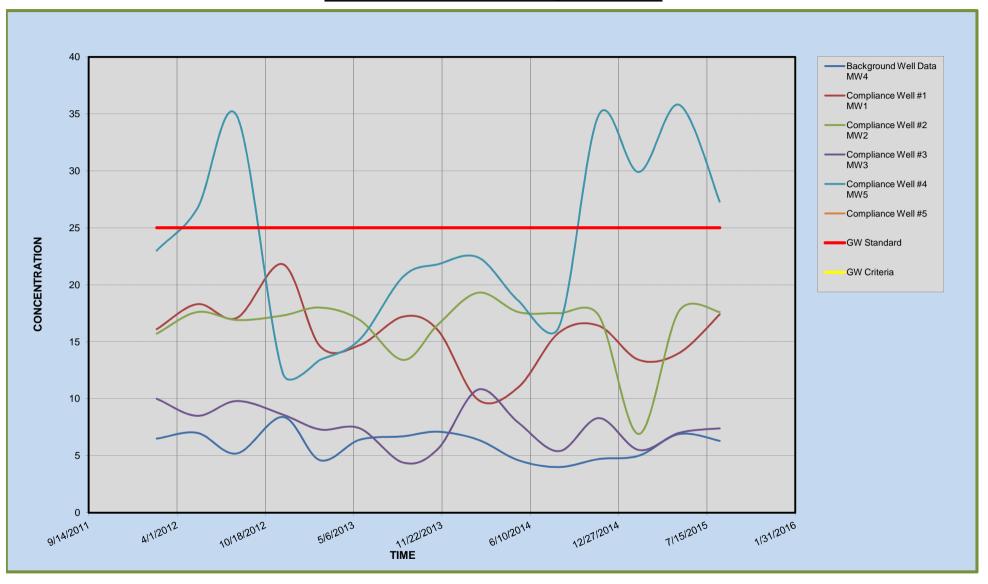
Poculto:	Significance to	Rackground **

		Distribution Tests		Non-normal Test	Norm	al Tests	
		Shapiro-Wilk Normality Test	Shapiro-Wilk Log- Normality Test			T-test (lognormal)	
MW4	Background Well	Not normal	Not normal		N/A		
MW1	Compliance Well #1	Normal	Normal	Significant	Significant	Significant	
MW2	Compliance Well #2	Not normal	Not normal	Significant	Significant	Significant	
MW3	Compliance Well #3	Not normal	Not normal	Significant	Significant	Significant	
MW5	Compliance Well #4	Normal	Normal	Significant Significant		Significant	
	Compliance Well #5						

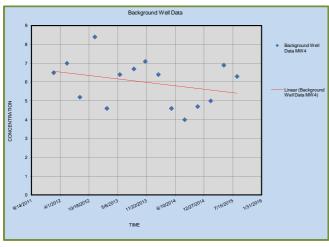
^{**} Please note that the above cells will appear blank in cases where a test cannot be conducted due to lack of data, or if the test assumptions are invalid due to lack of data variation.

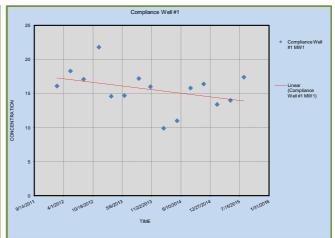
Results: Linear Regression Trend Analysis and Interpretation of Data

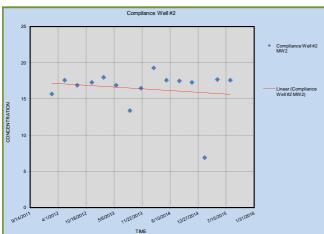
		Regression Line Pearson		Interpretation		
		Slope	Correlation (R)	Linear Trend	Degree of Data Linearity	
MW4	Background Well	-0.000914258	-0.301490901	Slight Decrease	Moderately Weak	
MW1	Compliance Well #1	-0.002641893	-0.369508125	Slight Decrease	Moderately Weak	
MW2	Compliance Well #2	-0.001201299	-0.166378879	Slight Decrease	Very Weak	
MW3	Compliance Well #3	-0.001917393	-0.423306115	Slight Decrease	Moderately Weak	
MW5	Compliance Well #4	0.006523011	0.337317634	Slight Increase	Moderately Weak	
	Compliance Well #5					

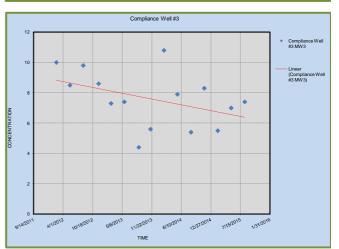

Results: Groundwater Standards/Criteria Comparison

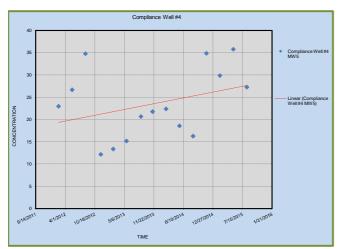
		Groundwater Standard		Groundwa	Total No. of Data	
		No. Violations of GW Standard	% Violations of GW Standard	No. Violations of GW Criteria	% Violations of GW Criteria	Points
MW4	Background Well	0	0%			15
MW1	Compliance Well #1	0	0%			15
MW2	Compliance Well #2	0	0%			15
MW3	Compliance Well #3	0	0%			15
MW5	Compliance Well #4	6	40%			15
	Compliance Well #5					

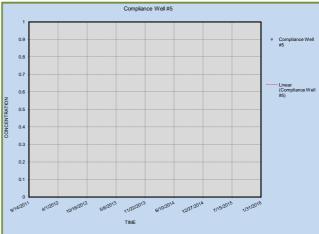

Results: Basic Statistics (less-than values ignored)


		Maximum Value	Minimum Value	Average	
MW4	Background Well	8.400	4.000	5.987	
MW1	Compliance Well #1	21.800	9.900	15.580	
MW2	Compliance Well #2	19.300	6.900	16.413	
MW3	Compliance Well #3	10.800	4.400	7.593	
MW5	Compliance Well #4	35.800	12.200	23.533	
	Compliance Well #5				


Addison-Evans: Groundwater Monitoring Data for Chloride




Addison-Evans: Groundwater Monitoring Regression Trends for Chloride



Groundwater Monitoring Data Analysis (v.3)

Facility Name:	Addison-Evans
Permit No.:	VA0006254
Monitoring Parameter:	Ammonia
Applicable GW Standard (if none leave blank):	0.025
Applicable GW Criteria (if none leave blank):	
Concentration Units (all data):	mg/L

		Data Entry							
	Well Designation ▶	MW4	MW1	MW2	MW3	MW5			
	Sample or Report	Background	Compliance	Compliance	Compliance	Compliance	Compliance		
	Date (ascending)	Well Data	Well #1	Well #2	Well #3	Well #4	Well #5		
1	2/15/2012	0	1.9	0	0	0			
2	5/17/2012	0	1.71	0	0	0			
3	8/15/2012	0	0.34	0	0	0			
4	11/27/2012	0	0.45	0	0	0			
5	2/19/2013	0	1.4	0	0	0			
6	5/20/2013	0	0.82	0	0.12	0			
7	8/26/2013	0	0.62	0.1	0.26	0			
8	11/13/2013	0	0.4	0	0.37	0			
-	2/12/2014	0	2.06	0	0.16	0			
10	5/14/2014	0	2.2	0	0	0			
11 12	8/14/2014	0	0.75	0	0	0.42			
13	11/12/2014 2/11/2015	0	0.51 2.78	0	0.62 0.47	0.11			
14	5/13/2015	0	1.59	0	0.47	0.11			
15	8/13/2015	0	1.14	0	0.38	0.1			
16	0/13/2013	0	1.14	0	0.30	- 0			
17									
18									
19									
20									
21									
22									
23									
24									
25									
26									
27									
28									
29									
30									
31									
32									
34									
35									
36									
37									
38									
39									
40									
41									
42									
43									
44									
45									
46									
47									
48									
49									
50									

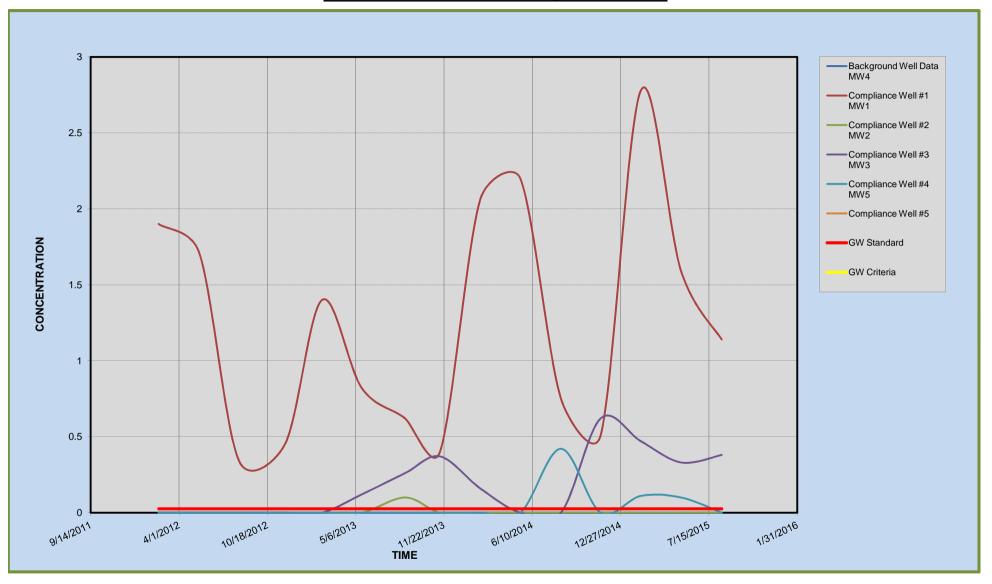
Results: S	Significance to	Background **
------------	-----------------	---------------

		Distributi	ion Tests	Non-normal Test	Normal Tests	
		Shapiro-Wilk Normality Test	Shapiro-Wilk Log- Normality Test	Wilcoxon Rank Sum Test	T-test T-test (lognorma	
MW4	Background Well			N/A		
MW1	Compliance Well #1	Normal	Normal	Significant	Significant	
MW2	Compliance Well #2	Not normal		Not Significant	Not Significant	
MW3	Compliance Well #3	Not normal		Significant	Significant	
MW5	Compliance Well #4	Not normal		Not Significant	Not Significant	
	Compliance Well #5					

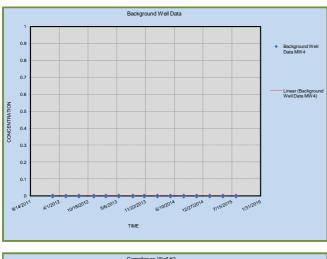
^{**} Please note that the above cells will appear blank in cases where a test cannot be conducted due to lack of data, or if the test assumptions are invalid due to lack of data variation.

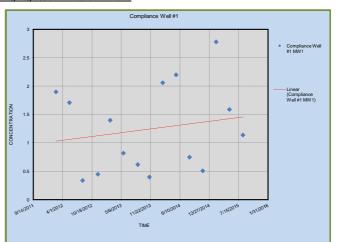
Results: Linear Regression Trend Analysis and Interpretation of Data

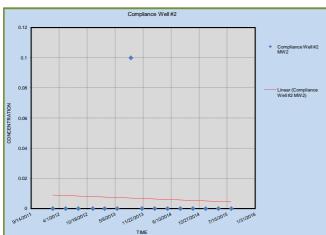
		Regression Line	Pearson	Interpretation	
		Slope	Correlation (R)	Linear Trend	Degree of Data Linearity
MW4	Background Well	0		No trend, slope is neutral	
MW1	Compliance Well #1	0.000333486	0.176158284	Slight Increase	Very Weak
MW2	Compliance Well #2	-3.5433E-06	-0.055658372	Slight Decrease	Very Weak
MW3	Compliance Well #3	0.00035949	0.696503482	Slight Increase	Moderately Strong
MW5	Compliance Well #4	9.47016E-05	0.346484447	Slight Increase	Moderately Weak
	Compliance Well #5				

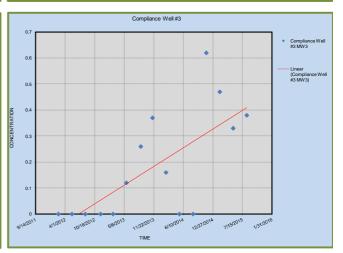

Results: Groundwater Standards/Criteria Comparison

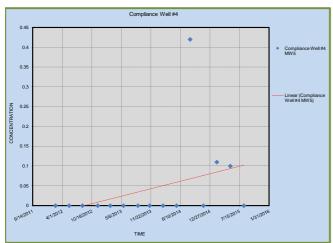
		Groundwater Standard		Groundwa	Total No. of Data	
		No. Violations of GW Standard	% Violations of GW Standard	No. Violations of GW Criteria	% Violations of GW Criteria	Points
MW4	Background Well	0	0%			15
MW1	Compliance Well #1	15	100%			15
MW2	Compliance Well #2	1	6.7%			15
MW3	Compliance Well #3	8	53.3%			15
MW5	Compliance Well #4	3	20%			15
	Compliance Well #5					

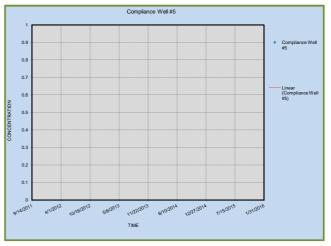

Results: Basic Statistics (less-than values ignored)


		Maximum Value	Minimum Value	Average	
MW4	Background Well	0.000	0.000	0.000	
MW1	Compliance Well #1	2.780	0.340	1.245	
MW2	Compliance Well #2	0.100	0.000	0.007	
MW3	Compliance Well #3	0.620	0.000	0.181	
MW5	Compliance Well #4	0.420	0.000	0.042	
	Compliance Well #5				


Addison-Evans: Groundwater Monitoring Data for Ammonia




Addison-Evans: Groundwater Monitoring Regression Trends for Ammonia



Groundwater Monitoring Data Analysis (v.3)

Facility Name:	Addison-Evans
Permit No.:	VA0006254
Monitoring Parameter:	Sulfate
Applicable GW Standard (if none leave blank):	25
Applicable GW Criteria (if none leave blank):	
Concentration Units (all data):	mg/L

		Data Entry						
	Well Designation ▶	MW4	MW1	MW2	MW3	MW5		
Ī	Sample or Report Date (ascending)	Background Well Data	Compliance Well #1	Compliance Well #2	Compliance Well #3	Compliance Well #4	Compliance Well #5	
1	2/15/2012	19.4	0	10.1	41.9	47.9		
2	5/17/2012	13.6	0	8.8	48.2	51.4		
3	8/15/2012	5.6	1	9	43.9	43.7		
4	11/27/2012	8.8	0	7.8	37.9	37.8		
5	2/19/2013	4.7	0	7.2	61.4	41.9		
6	5/20/2013	10.6	0	6.4	71.4	40.6		
7	8/26/2013	11.1	1.7	5.4	230	42.6		
8	11/13/2013	10.3	1	6	121	34.5		
9	2/12/2014	6.4	9.9	19.3	10.8	22.4		
10	5/14/2014	12.1	1	9.5	158	52.4		
11	8/14/2014	11.3	0	6.4	133	35.2		
12	11/12/2014	9.9	0	7.6	76.4	35.2		
13	2/11/2015	11.1	1.1	3.3	86.4	34.4		
14	5/13/2015	10.6	0	6.1	110	41.6		
15	8/13/2015	11.4	0	6.2	97.8	31.2		
16								
17 18								
19								
20								
21								
22								
23								
24 25								
26								
27								
28								
29								
30								
31								
32								
33								
34								
35								
36								
37								
38								
39								
40								
41								
42								
43								
44								
45								
46								
47								
48								
49								
50								

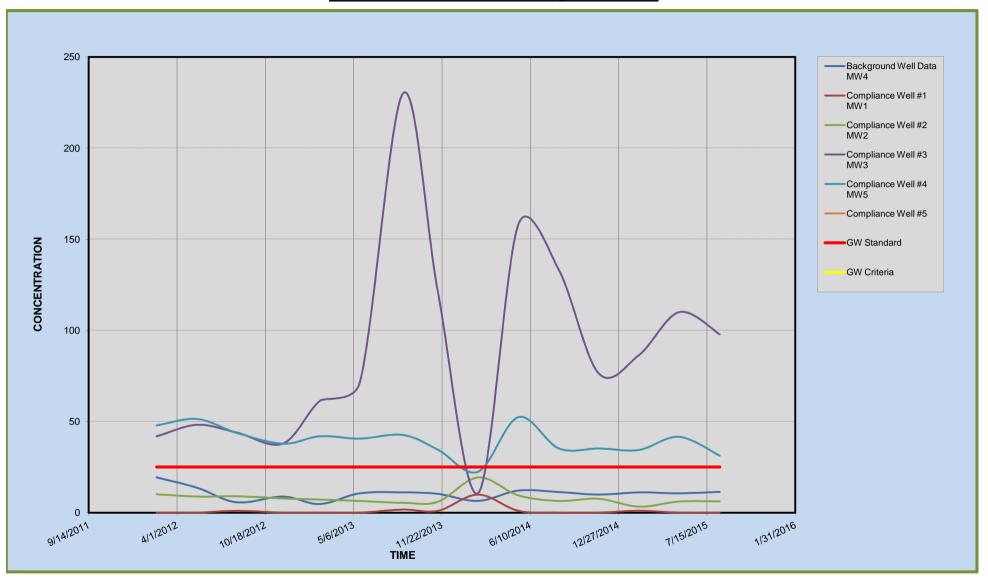
Results:	Significance	to	Background **	
----------	--------------	----	---------------	--

		Distributi	ion Tests	Non-normal Test Normal Tests		al Tests
		Shapiro-Wilk Normality Test	Shapiro-Wilk Log- Normality Test	Wilcoxon Rank Sum Test T-test (lognorm		
MW4	Background Well	Not normal	Not normal	N/A		
MW1	Compliance Well #1	Not normal		Not Significant	Not Significant	
MW2	Compliance Well #2	Not normal	Not normal	Not Significant	Not Significant	Not Significant
MW3	Compliance Well #3	Normal	Normal	Significant	Significant	Significant
MW5	Compliance Well #4	Not normal	Not normal	Significant Significant Significan		Significant
	Compliance Well #5					

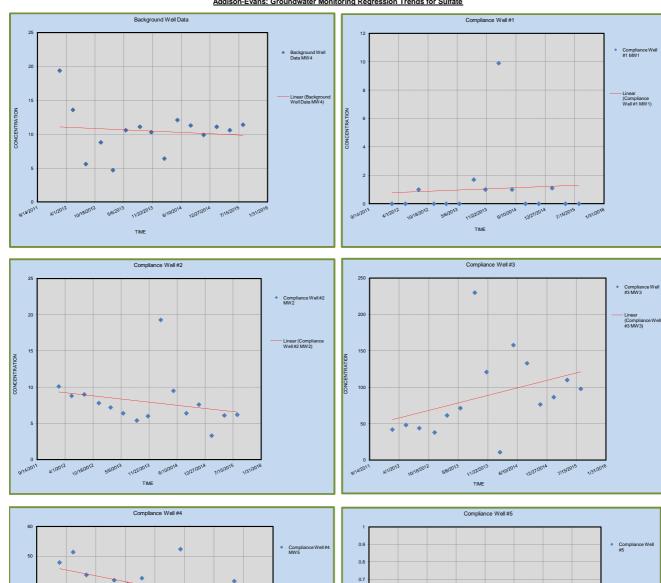
^{**} Please note that the above cells will appear blank in cases where a test cannot be conducted due to lack of data, or if the test assumptions are invalid due to lack of data variation.

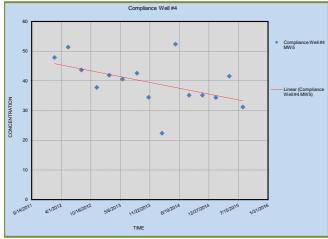
Results: Linear Regression Trend Analysis and Interpretation of Data

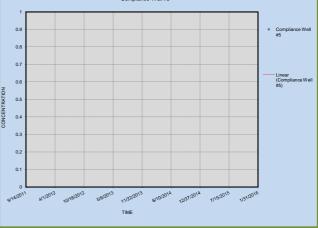
		Regression Line	Pearson	Interpretation	
		Slope	Correlation (R)	Linear Trend	Degree of Data Linearity
MW4	Background Well	-0.000966955	-0.112117687	Slight Decrease	Very Weak
MW1	Compliance Well #1	0.000413941	0.066707228	Slight Increase	Very Weak
MW2	Compliance Well #2	-0.002197609	-0.247479079	Slight Decrease	Very Weak
MW3	Compliance Well #3	0.051615527	0.37342731	Slight Increase	Moderately Weak
MW5	Compliance Well #4	-0.009836463	-0.506260929	Slight Decrease	Moderately Strong
	Compliance Well #5				


Results: Groundwater Standards/Criteria Comparison

		Groundwater Standard		Groundwa	Total No. of Data	
		No. Violations of GW Standard	% Violations of GW Standard	No. Violations of GW Criteria	% Violations of GW Criteria	Points
MW4	Background Well	0	0%			15
MW1	Compliance Well #1	0	0%			15
MW2	Compliance Well #2	0	0%			15
MW3	Compliance Well #3	14	93.3%			15
MW5	Compliance Well #4	14	93.3%			15
	Compliance Well #5					


Results: Basic Statistics (less-than values ignored)


		Maximum Value	Minimum Value	Average	
MW4	Background Well	19.400	4.700	10.460	
MW1	Compliance Well #1	9.900	0.000	1.047	
MW2	Compliance Well #2	19.300	3.300	7.940	
MW3	Compliance Well #3	230.000	10.800	88.540	
MW5	Compliance Well #4	52.400	22.400	39.520	
	Compliance Well #5				


Addison-Evans: Groundwater Monitoring Data for Sulfate

Addison-Evans: Groundwater Monitoring Regression Trends for Sulfate

Groundwater Monitoring Data Analysis (v.3)

ı	Facility Name:	Addison-Evans
ſ	Permit No.:	VA0006254
ſ	Monitoring Parameter:	TDS
ſ	Applicable GW Standard (if none leave blank):	250
ſ	Applicable GW Criteria (if none leave blank):	
ı	Concentration Units (all data):	mg/L

Date (ascending) Well Data Well #1 Well #2 Well #3 Well #4 Well #5 2/15/2012 178 340 264 152 284 25/17/2012 200 350 278 192 332 332 38/15/2012 148 343 301 151 321 11/27/2012 92 295 284 171 256 5 2/19/2013 68 317 310 214 282 6 5/20/2013 75 325 301 424 308 78/26/2013 85 362 298 521 292 298 271 292 298 271/2014 68 275 320 408 300 10 5/14/2014 57 346 317 349 340 340 371 349 340 371			Data Entry					
Date (ascending) Well Data Well #1 Well #2 Well #3 Well #4 Well #5 2/15/2012 178 340 264 152 284 2/15/2012 200 350 278 192 332 332 38 /15/2012 148 343 301 151 321 17/2012 292 295 284 171 256 5 2/19/2013 68 317 310 214 282 6 5/20/2013 75 325 301 424 308 7 8/26/2013 85 362 298 521 292 298 271 292 299 310 301	Well Designation ▶		MW4	MW1	MW2	MW3	MW5	
1 2/15/2012	Ī							Compliance Well #5
2 5/17/2012 200 350 278 192 332 332 34/15/2012 148 343 301 151 321 4 11/27/2012 92 295 284 171 256 5 2/19/2013 68 317 310 214 282 6 5/20/2013 75 325 301 424 308 7 8/26/2013 85 362 298 521 299 8 11/13/2013 51 305 259 310 301 92 2/12/2014 68 275 320 408 300 15 5/14/2014 57 346 317 349 340 11 8/14/2014 57 346 317 349 340 11 8/14/2014 79 354 312 361 350 11 8/14/2014 79 354 312 361 350 11 11/2/2015 107 316 296 245 305 14 5/13/2015 92 397 328 309 338 15 8/13/2015 92 397 328 309 338 15 8/13/2015 92 397 328 309 338 39 39 39 39 39 39 39 39 39 39 39 39 39	1			340	264		284	
3 8/15/2012 148 343 301 151 321 4 11/27/2012 92 295 284 1771 256 5 27/9/2013 68 317 310 214 282 6 5/20/2013 75 325 301 424 308 7 8/26/2013 85 362 298 521 292 8 11/13/2013 51 305 259 310 301 9 2/12/2014 68 275 320 408 300 10 5/14/2014 57 346 317 349 340 11 8/14/2014 79 354 312 361 350 12 11/12/2014 171 352 324 285 311 13 2/11/2015 63 314 309 295 346 15 8/13/2015 92 397 328 309 338 <								
4 11/27/2012 92 295 284 171 256 5 2/19/2013 68 317 310 214 282 6 5/20/2013 75 325 301 424 308 7 8/26/2013 85 362 298 521 292 11/13/2013 51 305 259 310 301 9 2/12/2014 68 275 320 408 300 10 5/14/2014 57 346 317 349 340 11 8/14/2014 79 354 312 361 350 12 11/12/2014 171 352 324 285 311 13 2/11/2015 107 316 296 245 305 14 5/13/2015 63 314 309 295 346 15 8/13/2015 92 397 328 309 338 16 17 18 19 20 21 22 23 31 31 31 31 32 33 31 31 31 31 32 33 33 31 34 44 44 45 46 47 47								
5 2/19/2013 68 317 310 214 282 6 5/20/2013 75 325 301 424 308 7 8/26/2013 85 362 298 521 292 8 11/13/2013 51 305 259 310 301 9 2/12/2014 68 275 320 408 300 10 5/14/2014 57 346 317 349 340 11 8/14/2014 79 354 312 361 350 12 11/12/2014 79 354 312 361 350 13 2/11/2015 107 316 296 245 305 14 5/13/2015 63 314 309 295 346 15 8/13/2015 92 397 328 309 338 16 92 397 328 309 338 29								
6 5/20/2013 75 325 301 424 308 77 8/26/2013 85 362 298 521 292 8 11/13/2013 51 305 259 310 301 9 2/12/2014 68 275 320 408 300 10 5/14/2014 57 346 317 349 340 11 8/14/2014 79 354 312 361 350 12 11/12/2014 171 352 324 285 311 31 32/11/2015 63 314 309 295 346 5/13/2015 92 397 328 309 338 16 6 17	5		68					
7 8/26/2013 85 362 298 521 292 8 11/13/2013 51 305 259 310 301 9 2/12/2014 68 275 320 408 300 10 5/14/2014 57 346 317 349 340 11 8/14/2014 79 354 312 361 350 12 11/12/2014 171 352 324 285 311 13 2/11/2015 107 316 296 245 305 14 5/13/2015 63 314 309 295 346 15 8/13/2015 92 397 328 309 338 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	6	5/20/2013	75	325	301	424	308	
9	7		85	362	298	521	292	
10		11/13/2013	51	305	259	310	301	
11 8/14/2014 79 354 312 361 350 11/12/2014 171 352 324 285 311 13 2/11/2015 107 316 296 245 305 14 5/13/2015 63 314 309 295 346 15 8/13/2015 92 397 328 309 338 16	9		68	275	320	408	300	
12	10	5/14/2014	57	346	317	349	340	
13						361	350	
14 5/13/2015 63 314 309 295 346 15 8/13/2015 92 397 328 309 338 16 17 18 19 20 21 22 23 24 25 26 27 28 30 30 30 30 30 30 30 30 30 30 30 30 30								
15 8/13/2015 92 397 328 309 338 16								
16								
17		8/13/2015	92	397	328	309	338	
18								
19								
20								
21								
22 23								
23 24 25 26 27 28 29 30 30 31 31 32 33 34 34 35 36 36 37 38 39 40 40 41 41 42 43 44 44 44 45 46 47	L							
24								
25								
27 28 30 30 31 32 33 34 35 36 36 37 38 39 40 41 41 41 42 43 44 44 44 45 46 46 47 47	25							
28	26							
29	27							
30 31 32 33 34 35 36 37 38 38 39 40 41 41 42 43 44 44 44 47 47 48								
31								
32 33 34 35 36 37 38 39 40 41 41 42 43 44 44 45 46 46 47 47								
33								
34								
35								
36								
37 38 39 40 41 41 42 43 44 44 45 46 46 47 48								
39								
40								
41	39							
42 43 44 45 46 47 48								
43 44 45 46 47 47 48								
44 45 46 47 48								
45								
46 47 48								
47 48								
48								
49								
50								

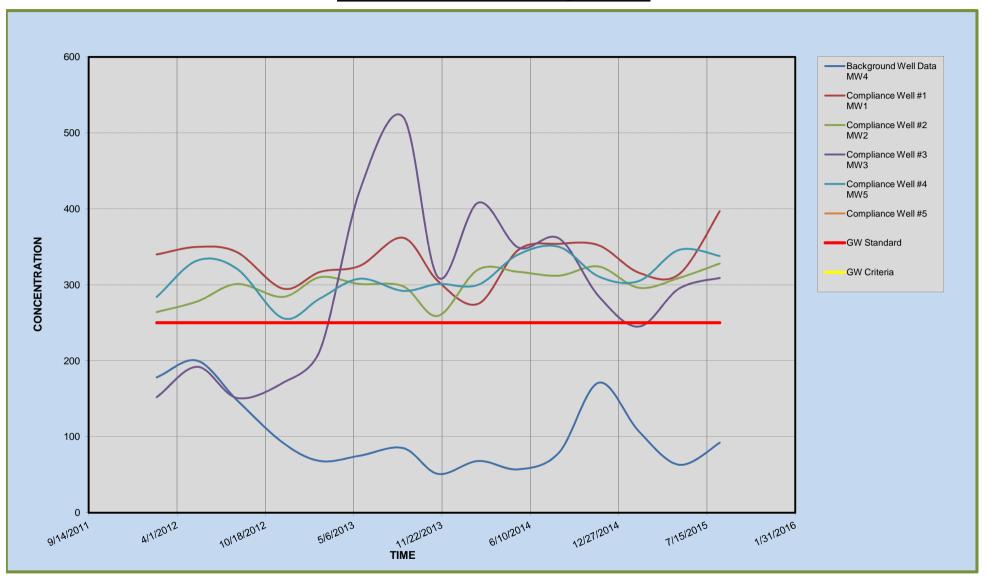
Results:	Significance to Background **	
----------	-------------------------------	--

		Distributi	on Tests Non-normal Test		Normal Tests	
		Shapiro-Wilk Normality Test	Shapiro-Wilk Log- Normality Test	Wilcoxon Rank Sum Test	T-test	T-test (lognormal)
MW4	Background Well	Not normal	Not normal		N/A	
MW1	Compliance Well #1	Normal	Normal	Significant	Significant	Significant
MW2	Compliance Well #2	Not normal	Not normal	Significant	Significant	Significant
MW3	Compliance Well #3	Normal	Normal	Significant	Significant	Significant
MW5	Compliance Well #4	Normal	Normal	Significant	Significant	Significant
	Compliance Well #5					

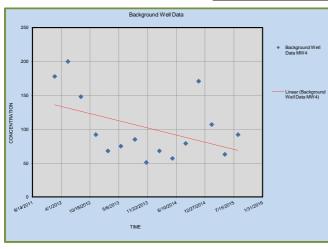
Please note that the above cells will appear blank in cases where a test cannot be conducted due to lack of data, or if the test assumptions are invalid due to lack of data variation.

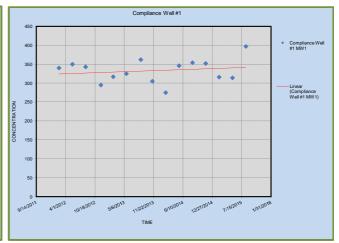
Results: Linear Regression Trend Analysis and Interpretation of Data

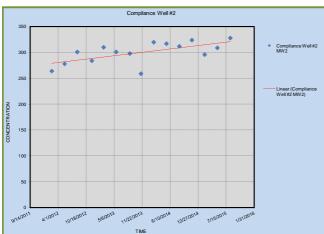
		Regression Line	Pearson	Interpretation		
		Slope Correlation (R)		Linear Trend	Degree of Data Linearity	
MW4	Background Well	-0.05294164	-0.445742771	Slight Decrease	Moderately Weak	
MW1	Compliance Well #1	0.013440387	0.179531857	Slight Increase	Very Weak	
MW2	Compliance Well #2	0.032691869	0.634535897	Slight Increase	Moderately Strong	
MW3	Compliance Well #3	0.112050616	0.41935949	Slight Increase	Moderately Weak	
MW5	Compliance Well #4	0.034239022	0.517553608	Slight Increase	Moderately Strong	
	Compliance Well #5					

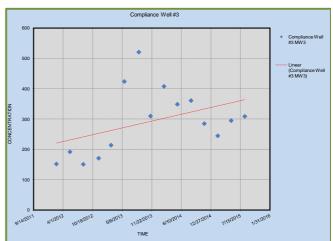

Results: Groundwater Standards/Criteria Comparison

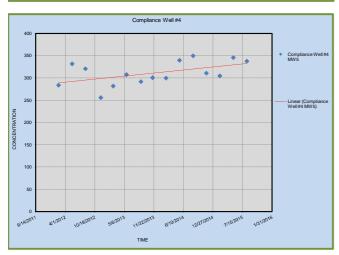
		Groundwater Standard		Groundwa	Total No. of Data	
		No. Violations of GW Standard	% Violations of GW Standard	No. Violations of GW Criteria	% Violations of GW Criteria	Points
MW4	Background Well	0	0%			15
MW1	Compliance Well #1	15	100%			15
MW2	Compliance Well #2	15	100%			15
MW3	Compliance Well #3	9	60%			15
MW5	Compliance Well #4	15	100%			15
	Compliance Well #5					


Results: Basic Statistics (less-than values ignored)


		Maximum Value	Minimum Value	Average	
MW4	Background Well	200.000	51.000	102.267	
MW1	Compliance Well #1	397.000	275.000	332.733	
MW2	Compliance Well #2	328.000	259.000	300.067	
MW3	Compliance Well #3	521.000	151.000	292.467	
MW5	Compliance Well #4	350.000	256.000	311.067	
	Compliance Well #5				


Addison-Evans: Groundwater Monitoring Data for TDS




Addison-Evans: Groundwater Monitoring Regression Trends for TDS

Groundwater Monitoring Data Analysis (v.3)

Facility Name:	Addison-Evans
Permit No.:	VA0006254
Monitoring Parameter:	TOC
Applicable GW Standard (if none leave blank):	10
Applicable GW Criteria (if none leave blank):	
Concentration Units (all data):	ma/L

				Data Entry				
1	Well Designation ▶	MW4	MW1	MW2	MW3	MW5		
	Sample or Report	Background	Compliance	Compliance	Compliance	Compliance	Compliance	
L	Date (ascending)	Well Data	Well #1	Well #2	Well #3	Well #4	Well #5	
1	2/15/2012	1.1	16.3	3.9	1.6	1.7		
2	5/17/2012	1.5	27.2	4.7	1.5	2.8		
3	8/15/2012	3.6	14	5	1.5	2.4		
4	11/27/2012	1.3	19.6	5.6	1.6	2.3		
5	2/19/2013	0	20.2	5.3	1.3	2.2		
6	5/20/2013	1	15.7	4.9	155	1.9		
7	8/26/2013	1.8	15.6	5.6	4.7	2.4		
8	11/13/2013	0	14	4.8	2.5	2.3		
10	2/12/2014	1.6	11	4.7 4.9	13.4	1.8		
	5/14/2014 8/14/2014	1.4	14.1 16.1	5.3	2.9 3.3	2.1 3.4		
11 12	11/12/2014	0	14.6	5.3	3.3	2.2		
13	2/11/2015	1.2	29.5	5.3	3.2	2.2		
14	5/13/2015	1.4	26.2	6.1	4.5	3.3		
15	8/13/2015	1.3	25.4	6	2.4	2.6		
16	0/13/2013	1.5	25.4	0	2.4	2.0		
17								
18								
19								
20								
21								
22								
23								
24								
25 26								
27								
28								
29								
30								
31								
32								
33								
34								
35								
36								
37								
38 39								
40								
41								
42								
43								
44								
45								
46								
47								
48								
49 50								
55								

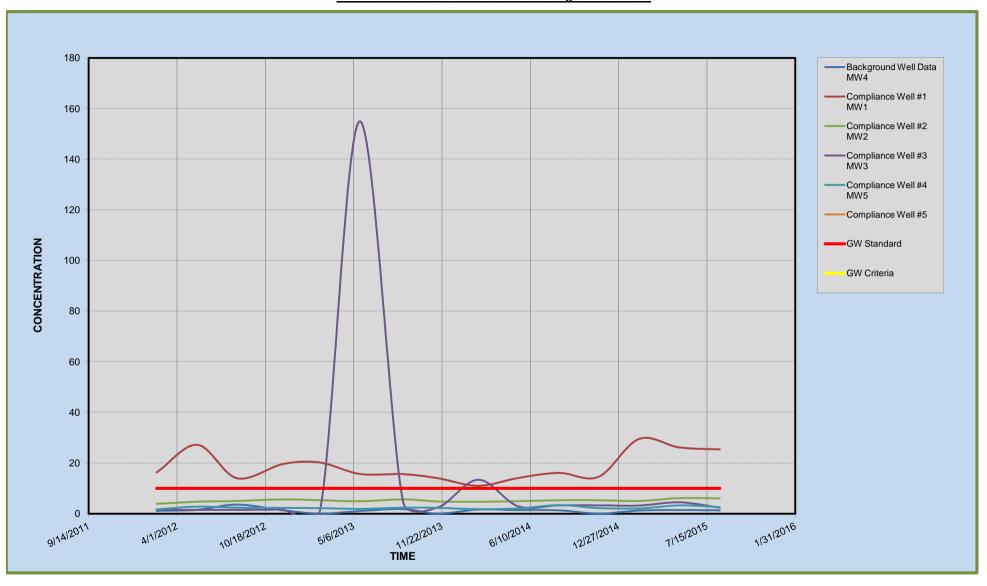
Results:	Significance to Background **
----------	-------------------------------

		Distributi	ion Tests	Non-normal Test	Normal Tests	
		Shapiro-Wilk Normality Test	Shapiro-Wilk Log- Normality Test	Wilcoxon Rank Sum Test	T-test	T-test (lognormal)
MW4	Background Well	Not normal		N/A		
MW1	Compliance Well #1	Not normal	Not normal	Significant	Significant	
MW2	Compliance Well #2	Not normal	Not normal	Significant	Significant	
MW3	Compliance Well #3	Not normal	Not normal	Significant	Not Significant	
MW5	Compliance Well #4	Not normal	Not normal	Significant	Significant	
	Compliance Well #5					

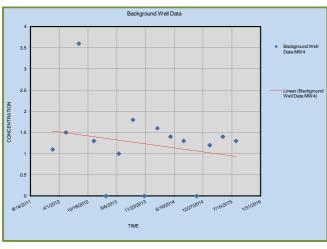
^{**} Please note that the above cells will appear blank in cases where a test cannot be conducted due to lack of data, or if the test assumptions are invalid due to lack of data variation.

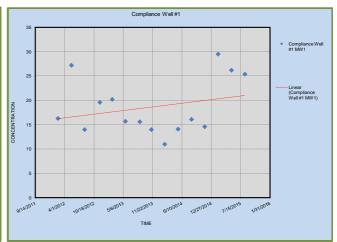
Results: Linear Regression Trend Analysis and Interpretation of Data

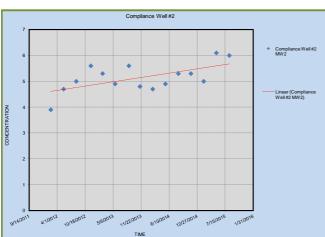
		Regression Line	Pearson	Interpretation		
		Slope	Correlation (R)	Linear Trend	Degree of Data Linearity	
MW4	Background Well	-0.000470442	-0.216903472	Slight Decrease	Very Weak	
MW1	Compliance Well #1	0.003750771	0.263790101	Slight Increase	Moderately Weak	
MW2	Compliance Well #2	0.00083495	0.607096793	Slight Increase	Moderately Strong	
MW3	Compliance Well #3	-0.009754672	-0.100789152	Slight Decrease	Very Weak	
MW5	Compliance Well #4	0.000425847	0.351856252	Slight Increase	Moderately Weak	
	Compliance Well #5					

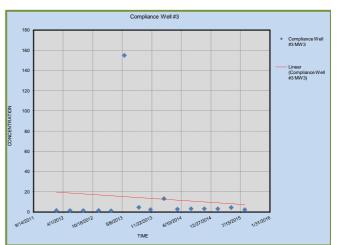

Results: Groundwater Standards/Criteria Comparison

		Groundwater Standard		Groundwa	Total No. of Data	
		No. Violations of GW Standard	% Violations of GW Standard	No. Violations of GW Criteria	% Violations of GW Criteria	Points
MW4	Background Well	0	0%			15
MW1	Compliance Well #1	15	100%			15
MW2	Compliance Well #2	0	0%			15
MW3	Compliance Well #3	2	13.3%			15
MW5	Compliance Well #4	0	0%			15
	Compliance Well #5					

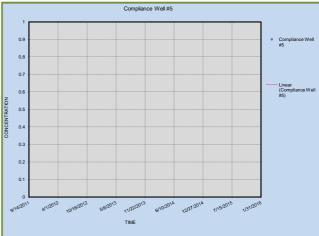

Results: Basic Statistics (less-than values ignored)


		Maximum Value	Minimum Value	Average	
MW4	Background Well	3.600	0.000	1.233	
MW1	Compliance Well #1	29.500	11.000	18.633	
MW2	Compliance Well #2	6.100	3.900	5.140	
MW3	Compliance Well #3	155.000	1.300	13.513	
MW5	Compliance Well #4	3.400	1.700	2.367	
	Compliance Well #5				


Addison-Evans: Groundwater Monitoring Data for TOC



Addison-Evans: Groundwater Monitoring Regression Trends for TOC



Groundwater Monitoring Data Analysis (v.3)

Facility Name:	Addison-Evans
Permit No.:	VA0006254
Monitoring Parameter:	TSS
Applicable GW Standard (if none leave blank):	
Applicable GW Criteria (if none leave blank):	
Concentration Units (all data):	ma/L

		Data Entry					
	Well Designation ▶	MW4	MW1	MW2	MW3	MW5	
	Sample or Report Date (ascending)	Background Well Data	Compliance Well #1	Compliance Well #2	Compliance Well #3	Compliance Well #4	Compliance Well #5
1	2/15/2012	612	18.4	47.8	24.4	104	
2	5/17/2012	200	17.8	0	2	20.2	
3	8/15/2012	78.5	2.6	2.7	1.6	1.9	
4	11/27/2012	7.9	1	0	0	0	
5	2/19/2013	6.7	13.9	2	1.4	0	
6	5/20/2013	1.6	11.9	0	8.5	0	
7	8/26/2013	20	23.3	1.3	4.3	1	
8	11/13/2013	0	2	0	3.1	0	
9	2/12/2014	7.6	7.1	0	0	0	
10	5/14/2014	2	22.7	2	3.4	1.3	
11	8/14/2014	2.4	9.7	0	4.1	0	
12	11/12/2014	15.9	5.9	12.8	7.2	1.2	
13	2/11/2015	13	12.3	1.7	9.1	0	
14 15	5/13/2015	2.7	9.2	8.4	27.4	2.1	
16	8/13/2015	0	9.3	0	2.5	2.4	
17							
18							
19							
20							
21							
22							
23							
24							
25							
26							
27							
28							
29							
30							
31							
32							
33							
34							
35							
36							
37							
38 39							
40 41							
42 43							
43							
44							
45							
47							
48							
49							
50							
-50							

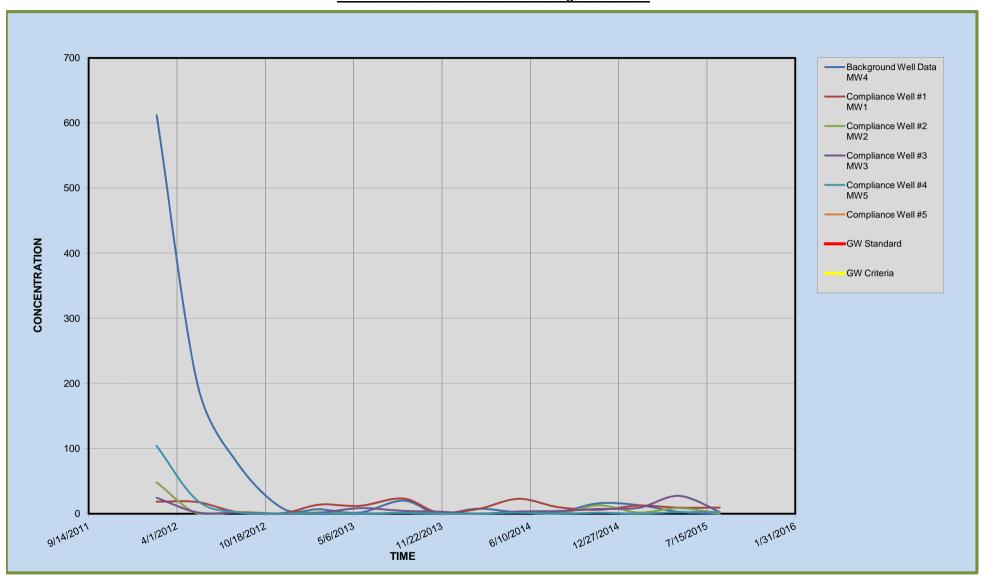
Results: S	Significance to	Background	**
------------	-----------------	------------	----

		Distributi	ion Tests	Non-normal Test	Norm	al Tests
		Shapiro-Wilk Normality Test	Shapiro-Wilk Log- Normality Test	Wilcoxon Rank Sum Test	T-test	T-test (lognormal)
MW4	Background Well	Not normal		N/A		
MW1	Compliance Well #1	Normal	Normal	Not Significant	Not Significant	
MW2	Compliance Well #2	Not normal		Not Significant	Not Significant	
MW3	Compliance Well #3	Not normal		Not Significant	Not Significant	
MW5	Compliance Well #4	Not normal		Not Significant	Not Significant	
	Compliance Well #5					

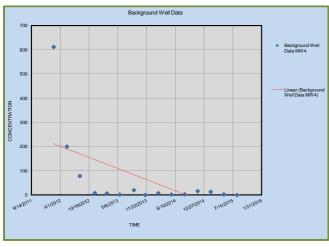
^{**} Please note that the above cells will appear blank in cases where a test cannot be conducted due to lack of data, or if the test assumptions are invalid due to lack of data variation.

Results: Linear Regression Trend Analysis and Interpretation of Data

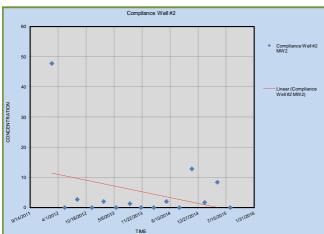
			Pearson	Interpretation		
		Regression Line Slope	Correlation (R)	Linear Trend	Degree of Data Linearity	
MW4	Background Well	-0.229541096	-0.581415232	Slight Decrease	Moderately Strong	
MW1	Compliance Well #1	-0.002133169	-0.122319238	Slight Decrease	Very Weak	
MW2	Compliance Well #2	-0.009611767	-0.316331723	Slight Decrease	Moderately Weak	
MW3	Compliance Well #3	0.002267841	0.110452488	Slight Increase	Very Weak	
MW5	Compliance Well #4	-0.032653032	-0.494459788	Slight Decrease	Moderately Weak	
	Compliance Well #5					

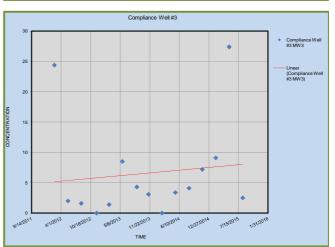

Results: Groundwater Standards/Criteria Comparison

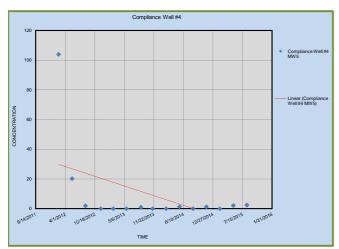
		Groundwater Standard		Groundwater Criteria		Total No. of Data	
		No. Violations of GW Standard	% Violations of GW Standard	No. Violations of GW Criteria	% Violations of GW Criteria	Points	
MW4	Background Well					15	
MW1	Compliance Well #1					15	
MW2	Compliance Well #2					15	
MW3	Compliance Well #3					15	
MW5	Compliance Well #4					15	
	Compliance Well #5						

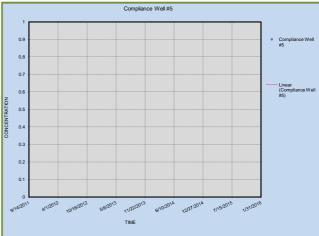

Results: Basic Statistics (less-than values ignored)

		Maximum Value	Minimum Value	Average	
MW4	Background Well	612.000	0.000	64.687	
MW1	Compliance Well #1	23.300	1.000	11.140	
MW2	Compliance Well #2	47.800	0.000	5.247	
MW3	Compliance Well #3	27.400	0.000	6.600	
MW5	Compliance Well #4	104.000	0.000	8.940	
	Compliance Well #5				


Addison-Evans: Groundwater Monitoring Data for TSS




Addison-Evans: Groundwater Monitoring Regression Trends for TSS



Groundwater Data and Analysis Summary for pH

East Field

Facility Name:	Addison-Evans				
Permit Number:	VA0006254	Date:	1/20/2016		
Parameter:	рН	Units:	S.U.		
Upgradient Well Designation		MW4	MW4		
Downgradient We	II Designation	MW1	MW1		
Downgradient We	II Designation	MW2			
Downgradient Well Designation		MW3			
Downgradient Well Designation		MW5			
Applicable Groun	ndwater Standard (Lower):	5.5	S.U.		
Applicable Groun	ndwater Standard (Upper):	8.5	S.U.		

St.Dev. ▶

Is the Mean greater than

3X St.Dev. ? ▶

0.46

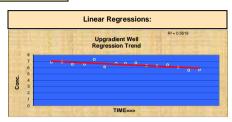
6.46

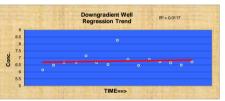
YES

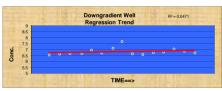
0.48

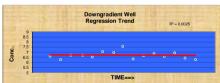
6.76

YES

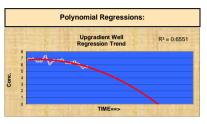

	Significant difference from	Trend An	alysis
	Upgradient Well using parametric test?	R-Sq.	Slope
MW1	YES	0.0117	0.0001
MW2	YES	0.0471	0.0002
			-

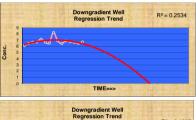

MW4 (Upgradient Well)


MW5

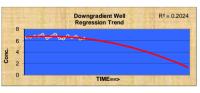

0

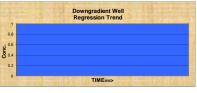
	Groundwater Monitoring Report Date	MW4 (Upgradient Well)	MW1	MW2	MW3	MW5	
	2/15/2012		6.14	6.56	6.62	6.55	
	5/17/2012		6.48	6.63	6.28	6.61	
	8/15/2012		6.69	6.68	6.72	6.78	
	11/27/2012	6.55	6.69	6.68	6.72	6.78	
Γ	2/19/2013		7.15	6.95	6.55	7.08	
	5/20/2013	6.13	6.68	6.73	7.07	6.39	
	8/26/2013	6.69	6.53	7.12	6.98	6.74	
	11/13/2013	6.68	8.27	7.68	7.58	7.11	
	2/12/2014	6.77	6.89	6.66	6.36	6.39	
)	5/14/2014	6.32	6.46	6.6	6.67	6.3	
1	8/14/2014	6.29	6.88	6.76	6.89	6.85	
2	11/12/2014	6.45	6.74	6.81	6.61	6.51	
3	2/11/2015	6.07	6.65	7.05	6.95	6.75	
1	5/13/2015	5.59	6.49	6.88	6.43	6.27	
5	8/13/2015	5.68	6.72	6.74	6.29	6.4	
6							
7							
8							
9					•	•	
)							
1							
3							
5							
6							
7							
3							
)							
2							
3							
1							
5							
L							
7							









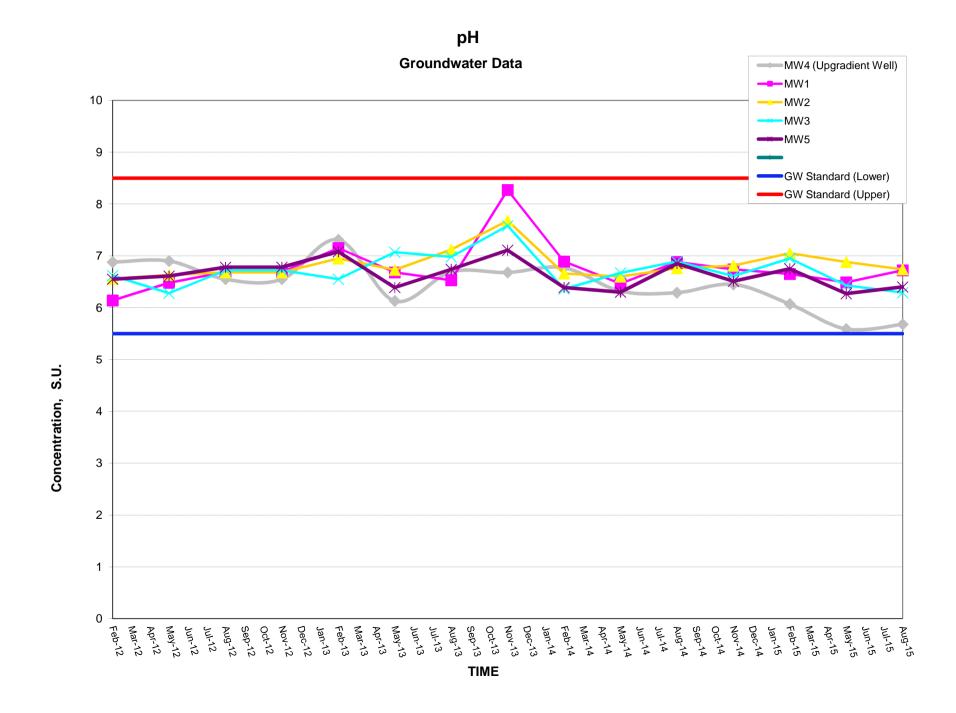


Note: The comparison of the Mean to three times the Standard Deviation may help to determine if there is a statistically significant change in the trend of a data set. If any of the cells above contain "NO", this may be an indication of a sudden increase or decrease in concentration of the parameter. This should only be used as a flag and not the basis for any final decisions regarding the acceptability of the data.

0.34

6.71

YES


0.26

6.63

YES

0.28

YES

рН	MW1	

Non-Normal Test

	Upgradient	Downgradient				
	Data	Data				
1	6.88	6.14				
2	6.9	6.48				
2 3 4 5	6.55	6.69				
4	6.55	6.69				
5	7.31	7.15				
6 7	6.13	6.68				
	6.69	6.53				
8	6.68	8.27				
9	6.77	6.89				
10	6.32	6.46				
11	6.29	6.88				
12	6.45	6.74				
13	6.07	6.65				
14	5.59	6.49				
15	5.68	6.72				
16						
17						
18						
19						
20						
21						
	Minimum	Minimum				
	5.59	6.14				
	Maximum 7.31	Maximum 8.27				
	Is there a s	_				
	differe	-				
	Lower Range	Upper Range				
	NO	YES				
		-				

Range

Cochran's Approximation to the Behrens-Fisher Student's t-Test (at a 5% Level of Significance)

	Upgradient Data	Downgradient Data	$[X_b-X_b(ave)]^2$	$[X_m-X_m(ave)]^2$
1	6.88	6.14	0.178647111	0.389376
2	6.9	6.48	0.195953778	0.080656
3	6.55	6.69	0.008587111	0.005476
4	6.55	6.69	0.008587111	0.005476
5	7.31	7.15	0.727040444	0.148996
6	6.13	6.68	0.107147111	0.007056
7	6.69	6.53	0.054133778	0.054756
8	6.68	8.27	0.049580444	2.268036
9	6.77	6.89	0.097760444	0.015876
10	6.32	6.46	0.018860444	0.092416
11	6.29	6.88	0.028000444	0.013456
12	6.45	6.74	5.37778E-05	0.000576
13	6.07	6.65	0.150027111	0.012996
14	5.59	6.49	0.752267111	0.075076
15	5.68	6.72	0.604247111	0.001936
16	0	0	0	0
17	0	0	0	0
18	0	0	0	0
19	0	0	0	0
20	0	0	0	0
21	0	0	0	0

Xb(ave)	6.457333333	Average of background data
Xm(ave)	6.7640000	Average of downgradient data
$T_b =$	1.761	From Lookup Table
$T_m =$	1.761	Tom Lookup Table
$s_b^2 =$	0.212920952	= $[(X_{b1}-X_b(ave))^2+(X_{b2}-X_b(ave))^2(X_{bn}-X_b(ave))^2]/(n_b-1)$
$s_m^2 =$	0.226582857	= $[(X_{m1}-X_m(ave))^2+(X_{m2}-X_m(ave))^2(X_{mn}-X_m(ave))^2]/(n_m-1)$
T _{star} =	1.791558032	= $[Xm(ave)-Xb(ave)]/sqrt(sm2/nm + sb2/nb)$
$W_b =$	0.01419473	= sb2/nb
$W_m =$	0.015105524	= sm2/nm
T _{comp} =	1.761	= (Wb*Tb + Wm*Tm)/(Wb + Wm)

There is a significant increase in this parameter

рН	MW2	

Non-Normal Test

Upgradient	Downgradient				
Data	Data				
6.88	6.56				
6.9	6.63				
6.55	6.68				
6.55	6.68				
7.31	6.95				
6.13	6.73				
6.69	7.12				
6.68	7.68				
6.77	6.66				
6.32	6.6				
6.29	6.76				
6.45	6.81				
6.07	7.05				
5.59	6.88				
5.68	6.74				
	Minimum 6.56				
	Maximum 7.68				
_					
	•				
Lower Range	Upper Range				
NO	YES				
	6.88 6.9 6.55 6.55 7.31 6.13 6.69 6.68 6.77 6.32 6.29 6.45 6.07 5.59 5.68 Minimum 5.59 Maximum 7.31 Is there a differed.				

r⊑o-opp Range

Cochran's Approximation to the Behrens-Fisher Student's t-Test (at a 5% Level of Significance)

	Upgradient Data	Downgradient Data	$[X_b-X_b(ave)]^2$	[X _m -X _m (ave)] ²	
1	6.88	6.56	0.178647111	0.075808444	
2	6.9	6.63	0.195953778	0.042161778	
3	6.55	6.68	0.008587111	0.024128444	
4	6.55	6.68	0.008587111	0.024128444	
5	7.31	6.95	0.727040444	0.013148444	
6	6.13	6.73	0.107147111	0.011095111	
7	6.69	7.12	0.054133778	0.081035111	
8	6.68	7.68	0.049580444	0.713461778	
9	6.77	6.66	0.097760444	0.030741778	
10	6.32	6.6	0.018860444	0.055381778	
11	6.29	6.76	0.028000444	0.005675111	
12	6.45	6.81	5.37778E-05	0.000641778	
13	6.07	7.05	0.150027111	0.046081778	
14	5.59	6.88	0.752267111	0.001995111	
15	5.68	6.74	0.604247111	0.009088444	
16	0	0	0	0	
17	0	0	0	0	
18	0	0	0	0	
19	0	0	0	0	
20	0	0	0	0	

Xb(ave) =	6.457333333	Average of background data
Xm(ave) =	6.8353333	Average of downgradient data
$T_b =$	1.761	From Lookup Table
$T_m =$	1.761	Trom Lookup Table
$s_b^2 =$	0.212920952	= $[(X_{b1}-X_b(ave))^2+(X_{b2}-X_b(ave))^2(X_{bn}-X_b(ave))^2]/(n_b-1)$
$s_m^2 =$	0.081040952	= $[(X_{m1}-X_m(ave))^2+(X_{m2}-X_m(ave))^2(X_{mn}-X_m(ave))^2]/(n_m-1)$
T _{star} =	2.700174944	= [Xm(ave)-Xb(ave)]/sqrt(sm2/nm + sb2/nb)
$W_b =$	0.01419473	= sb2/nb
W _m =	0.00540273	= sm2/nm
T _{comp} =	1.761	= (Wb*Tb + Wm*Tm)/(Wb + Wm)

There is a significant increase in this parameter

pH MW3	

	Non-Nor	mal Test
	Upgradient Data	Downgradient Data
1	6.88	6.62
2	6.9	6.28
3	6.55	6.72
4	6.55	6.72
5	7.31	6.55
6	6.13	7.07
7	6.69	6.98
8	6.68	7.58
9	6.77	6.36
10	6.32	6.67
11	6.29	6.89
12	6.45	6.61
13	6.07	6.95
14	5.59	6.43
15	5.68	6.29
16		
17		
18		
19		
20		
21		
	Minimum 5.59	Minimum 6.28
ŀ	Maximum	Maximum
	7.31	7.58
ŀ	Is there a s	
	differe	_
j	Lower Range	Upper Range
ľ	NO	YES
		•
		Pongo
		Range

Cochran's Approximation to the Behrens-Fisher Student's
t-Test (at a 5% Level of Significance)

	Upgradient Data	Downgradient Data	[X _b -X _b (ave)] ²	$[X_m-X_m(ave)]^2$	
1	6.88	6.62	0.178647111	0.008961778	
2	6.9	6.28	0.195953778	0.188935111	
3	6.55	6.72	0.008587111	2.84444E-05	
4	6.55	6.72	0.008587111	2.84444E-05	
5	7.31	6.55	0.727040444	0.027115111	
6	6.13	7.07	0.107147111	0.126261778	
7	6.69	6.98	0.054133778	0.070401778	
8	6.68	7.58	0.049580444	0.748801778	
9	6.77	6.36	0.097760444	0.125788444	
10	6.32	6.67	0.018860444	0.001995111	
11	6.29	6.89	0.028000444	0.030741778	
12	6.45	6.61	5.37778E-05	0.010955111	
13	6.07	6.95	0.150027111	0.055381778	
14	5.59	6.43	0.752267111	0.081035111	
15	5.68	6.29	0.604247111	0.180341778	
16	0	0	0	0	
17	0	0	0	0	
18	0	0	0	0	
19	0	0	0	0	
20	0	0	0	0	
21	0	0	0	0	
Xb(ave) =	6.457333333	Average of back	ground data		
Xm(ave) =	6.7146667	Average of dowr	ngradient data		
$T_b =$	1.761	From Lookup Ta	hle		
T _m =	1.761				
	0.212920952				
$s_m^2 =$	0.118340952				/(n _m -1)
T _{star} =	1.731633296	= [Xm(ave)-Xb(a	ve)]/sqrt(sm2/nm	n + sb2/nb)	
$W_b =$	0.01419473	= sb2/nb			
W _m =	0.007889397	= sm2/nm			
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c }\hline \textbf{Data} & \textbf{Data} & [X_b \cdot X_b (ave)]^2 & [X_m \cdot X_m (ave)]^2 \\ \hline 1 & 6.88 & 6.62 & 0.178647111 & 0.008961778 \\ 2 & 6.9 & 6.28 & 0.195953778 & 0.188935111 \\ 3 & 6.55 & 6.72 & 0.008587111 & 2.84444E-05 \\ 4 & 6.55 & 6.72 & 0.008587111 & 2.84444E-05 \\ 5 & 7.31 & 6.55 & 0.727040444 & 0.027115111 \\ 6 & 6.13 & 7.07 & 0.107147111 & 0.126261778 \\ 7 & 6.69 & 6.98 & 0.054133778 & 0.070401778 \\ 8 & 6.68 & 7.58 & 0.049580444 & 0.748801778 \\ 9 & 6.77 & 6.36 & 0.097760444 & 0.125788444 \\ 10 & 6.32 & 6.67 & 0.018860444 & 0.01995111 \\ 11 & 6.29 & 6.89 & 0.02800444 & 0.030741778 \\ 12 & 6.45 & 6.61 & 5.37778E-05 & 0.010955111 \\ 13 & 6.07 & 6.95 & 0.150027111 & 0.055381778 \\ 14 & 5.59 & 6.43 & 0.752267111 & 0.081035111 \\ 15 & 5.68 & 6.29 & 0.604247111 & 0.180341778 \\ 16 & 0 & 0 & 0 & 0 & 0 \\ 177 & 0 & 0 & 0 & 0 & 0 \\ 177 & 0 & 0 & 0 & 0 & 0 \\ 20 & 0 & 0 & 0 & 0 & 0 \\ 20 & 0 & 0 & 0 & 0 & 0 \\ 21 & 0 & 0 & 0 & 0 & 0 \\ 22 & 0 & 0 & 0 & 0 & 0 & 0 \\ 22 & 0 & 0 & 0 & 0 & 0 & 0 \\ 22 & 0 & 0 & 0 & 0 & 0 & 0 \\ 22 & 0 & 0 & 0 & 0 & 0 & 0 \\ 22 & 0 & 0 & 0 & 0 & 0 & 0 \\ 23 & 0 & 0 & 0 & 0 & 0 & 0 \\ 24 & 0 & 0 & 0 & 0 & 0 & 0 \\ 25 & 0 & 0.212920952 & = [(X_{b1} \cdot X_b (ave))^2 + (X_{b2} \cdot X_b (ave))^2(X_{bn} \cdot X_b (ave))^2]/(r \\ S_{bar} = & 0.212920952 & = [(X_{b1} \cdot X_b (ave))^2 + (X_{b2} \cdot X_b (ave))^2(X_{bn} \cdot X_b (ave))^2]/(r \\ S_{bar} = & 1.731633296 & = [Xm(ave) \cdot Xb (ave)]/sqrt(sm2/nm + sb2/nb) \\ W_b = & 0.01419473 & = sb2/nb \\ \end{array}$

There is no significant difference between the monitoring data and the background data

1.761

= (Wb*Tb + Wm*Tm)/(Wb + Wm)

рН	MW5	

Non-Normal Test									
Upgradlent Data Downgradlent Data Downgradlent Data Data									
Upgradient Data		Non Nor	mal Tost	Cochr	an's Approxir	nation to th	e Behrens-	Fisher Stud	ent'
Upgradient Data Downgradient Data		NOII-NOII	iiai 165t		t-Test (at	t a 5% Level	of Signific	ance)	
Data		Harmadian)	Danie and diamet						
1 6.88 6.55							$[X_b-X_b(ave)]^2$	$[X_m-X_m(ave)]^2$	
2 6.9 6.61	1			1			0 178647111	0.007056	
3 6.55 6.78 6.78 4 6.55 6.78 5 6.78 6.55 6.78 0.008587111 0.021316 5 7.31 7.08 6 6.55 6.78 0.008587111 0.021316 6 6.13 6.39 6 6.13 6.39 6 6.13 6.39 0.107147111 0.059536 6 6.74 7 6.69 6.74 7 6.69 6.74 0.054133778 0.011236 8 6.68 7.11 8 6.68 7.11 0.049580444 0.226576 9 6.77 6.39 9 6.77 6.39 9 6.77 6.39 0.097760444 0.0595336 10 6.32 6.3 10 6.32 6.3 10 6.32 6.3 10 6.32 6.3 10 6.32 6.3 10 6.32 6.3 0.018860444 0.111556 11 6.29 6.85 0.028000444 0.046566 12 6.45 6.51 12 6.45 6.51 5.37778E-05 0.015376 13 6.07 6.75 13 6.07 6.75 0.150027111 0.013456 14 5.59 6.27 14 5.59 6.27 0.752267111 0.132496 16 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									
4 6.55 6.78 7.31 7.08 6 5 7.31 7.08 6 6.13 7.31 7.08 6 6.13 6.39 7.31 7.08 6.69 6.74 8 6.69 6.74 8 6.68 7.11 0.049580444 0.226576 9 6.77 6.39 9 6.77 6.39 9 6.77 6.39 0.097760444 0.059536 10 6.32 6.3 10 6.32 6.3 10 6.32 6.3 0.018860444 0.111556 11 6.29 6.85 11 6.29 6.27 14 5.59 6.27 14 5.59 6.27 15.568 6.4 0.604247111 0.054756 16 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
6 6.13 6.39 6.74 6.69 6.74 7 6.69 6.74 0.054133778 0.011236 8 6.68 7.11 8 6.68 7.11 0.049580444 0.226576 9 6.77 6.39 9 6.77 6.39 0.097760444 0.059536 11 6.29 6.85 11 6.29 6.85 11 6.29 6.85 11 6.29 6.85 6.51 12 6.45 6.51 5.37778E-05 0.015376 13 6.07 6.75 13 6.07 6.75 13 6.07 6.75 0.150027111 0.013456 14 5.59 6.27 14 5.59 6.27 0.752267111 0.013456 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									
7 6.69 6.74 7 6.69 6.74 0.054133778 0.011236 8 6.68 7.11 8 6.68 7.11 0.049580444 0.226576 9 6.77 6.39 9 6.77 6.39 0.097760444 0.059536 10 6.32 6.3 10 6.32 6.3 0.018860444 0.111556 11 6.29 6.85 11 6.29 6.85 0.028000444 0.046656 12 6.45 6.51 12 6.45 6.51 5.7778E-05 0.015376 13 6.07 6.75 13 6.07 6.75 0.150027111 0.013456 14 5.59 6.27 14 5.59 6.27 0.752267111 0.132496 15 5.68 6.4 15 5.68 6.4 0.604247111 0.054756 16 0 0 0 0 0 17 18 0 0 0 0 0 18 0 0 0 0 19 0 0 0 0 18 0 0 0 0 17 18 0 0 0 0 0 18 0 0 0 0 19 0 0 0 0 10 0 0 17 18 0 0 0 0 0 10 0 0 10 0 0 0		_							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-			_			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		•		-	_	51.55			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						_			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.00	0.4	_					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						_	_	_	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						_		_	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				_		_	_	_	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						0	_	_	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Minimum	Minimum		1	1			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		5.59	6.27	Xb(ave) =	6.457333333	Average of back	ground data		
Is there a significant difference? $T_m = 1.761$ $T_m =$		Maximum	Maximum	Xm(ave) =	6.6340000	Average of dowr	ngradient data		
Is there a significant difference? S _b ² = 0.212920952 = [(X _{b1} -X _b (ave)) ² +(X _{b2} -X _b (ave)) ² (X _{bn} -X _b (ave)) ²]/(n _b -1) S _m ² = 0.070025714 = [(X _{m1} -X _m (ave)) ² +(X _{m2} -X _m (ave)) ² (X _{mn} -X _m (ave)) ²]/(n _m -1) T _{star} = 1.286316834 = [Xm(ave)-Xb(ave)]/sqrt(sm2/nm + sb2/nb) W _b = 0.01419473 = sb2/nb W _m = 0.004668381 = sm2/nm T _{star} = 1.761		7.31	7.11	$T_b =$	1.761	From Lookup Ta	hle		
Lower Range Upper Range $S_m^2 = 0.070025714 = [(X_{m1}-X_m(ave))^2 + (X_{m2}-X_m(ave))^2(X_{mn}-X_m(ave))^2]/(n_m-X_m(ave))^2 + (X_{m2}-X_m(ave))^2(X_{mn}-X_m(ave))^2]/(n_m-X_m(ave))^2 + (X_{m2}-X_m(ave))^2(X_{mn}-X_m(ave))^2 / (N_m-X_m(ave))^2 + (X_{m2}-X_m(ave))^2(X_{mn}-X_m(ave))^2 / (N_m-X_m(ave))^2 / (N_m-X_m(av$		Is there a s	significant		1.761	·			
NO NO $T_{\text{star}} = 1.286316834 = [Xm(ave)-Xb(ave)]/sqrt(sm2/nm + sb2/nb)$ $W_b = 0.01419473 = sb2/nb$ $W_m = 0.004668381 = sm2/nm$		differe	ence?	$s_b^2 =$	0.212920952	$= [(X_{b1}-X_b(ave))^2$	$+(X_{b2}-X_{b}(ave))^{2}$	$(X_{bn}-X_{b}(ave))^{2}]/(n$	_b -1)
$W_b = 0.01419473 = sb2/nb$ $W_m = 0.004668381 = sm2/nm$		Lower Range	Upper Range	$s_m^2 =$	0.070025714	$= [(X_{m1}-X_m(ave))$	$^{2}+(X_{m2}-X_{m}(ave))^{2}$	$^{2}(X_{mn}-X_{m}(ave))^{2}]$	/(n _m -1
$W_m = 0.004668381 = sm2/nm$		NO	NO	T _{star} =	1.286316834	= [Xm(ave)-Xb(a	ve)]/sqrt(sm2/nn	n + sb2/nb)	
T 4 704 (MINSTIN : MarsTray//MIN : Mars)				$W_b =$	0.01419473	= sb2/nb			
NO $T_{comp} = 1.761 = (Wb*Tb + Wm*Tm)/(Wb + Wm)$				W _m =	0.004668381	= sm2/nm			
	-		NO	T _{comp} =	1.761	= (Wb*Tb + Wm	*Tm)/(Wb + Wm)	

There is no significant difference between the monitoring data and the background data

рН	MP-12	

Upgradient Data Downgradient Data Downgradient Data (K₀-X₀(ave))² (Xտ-Xտ(ave))² (Xտ-Xտ(Non-Nor	mal Test	Coch	ran's				e Behrens- I of Signific	Fisher Stud	dent
2 6.9 0 0.19953778 0 0.6.55					Ų				$[X_b-X_b(ave)]^2$	$[X_m-X_m(ave)]^2$	
Section Sect	ı	6.88			1	6.88	()	0.178647111	0	1
6.55 7.31 6.63 6.69 7.669 6.68 8.668 6.77 9.6.32 10.6.32 10.6.32 10.6.32 11.6.29 11.6.29 11.6.29 11.6.29 11.6.29 11.6.29 11.6.29 11.6.29 11.6.29 11.6.29 11.6.29 0.0.08860444 0.0.2800444 0.0.37778E-05 0.07 13.6.07 0.0.37778E-05 0.07 13.6.07 0.0.150027111 0.0.5.59 14.5.59 0.0.752267111 0.0.005776111 0.0.005776111 0.0.0057778E-05 0.0.07 13.6.07 0.0.150027111 0.0.0057778E-05 0.0.0057778E-05 0.0.0057778E-05 0.0.0057778E-05 0.0.0057778E-05 0.0.0057778E-05 0.0.0057778E-05 0.0.0057778E-05 0.0.0057778E-05 0.0.005027111 0.0.0057778E-05 0.0.0057778E-05 0.0.005027111 0.0.005027778E-05 0.00502778E-05 0.0050	2	6.9			2	6.9	(0	0.195953778	0	
6.55		6.55			3	6.55	()	0.008587111	0	
6.13 6.69 6.68 6.77 6.69 9 6.77 0 0.054133778 0 0.049580444 0 0.049580444 0 0.097760444 0 0.097786446 0 0.016886444 0 0.01688644 0 0.016886444 0 0.016886444 0 0.016886444 0 0.016886444 0 0.016886444 0 0.016886444 0 0.016886444 0 0.016886444 0 0.016886444 0 0.016886444 0 0.016886444 0 0.016886444 0 0.016886444 0 0.016886444 0 0.016886444 0 0.016886444 0 0.016886444 0 0.016886444		6.55			4	6.55	()	0.008587111	0	
6.69 6.68 6.68 6.77 6.68 9 6.68 0.0049580444 0.0049580444 0.0097760444 0.00977708444 0.0097760444 0.00976044 0.00976044 0.009776044 0.009776044 0.009776044 0.009776044 0.009776044 0.009776044 0.009776044 0.009776044 0.00977604 0.00977786-05 0.00977604 0.00977786-05 0.00977786-05 0.00977786-05 0.00977786-05 0.00977786-05 0.00977786-05 0.00977786-05 0.00977786-05 0.0097786-05 0.00977786-05 0.0097786-05 0.0097786-05 0.0097786-05 0.0097786-05 0.0097786-05 0.0097786-05 0.0097786-05 0.0097786-05 0.0097786-05 0.0097786-05 0.0097786-05 0.0097786-05 0.0097786-05 0.0		7.31			5	7.31	()	0.727040444	0	
6.68 6.77 6.32 6.29 6.45 6.07 7 5.59 5.68 Minimum 7.31 Maximum 7.31 Maximum 7.31 Maximum 7.31 O Step a significant difference? Lower Range Upper Range VES NO My = #DIV/O!		6.13			6	6.13	()	0.107147111	0	
6.77 6.32 6.29 6.45 6.07 5.59 5.68 Minimum 5.59 Minimum 7.31 Maximum 7.31 Maximum 7.31 O Society Maximum 7.31 O Is there a significant difference? Lower Range Upper Range YES NO Model Additional and a significant difference? Lower Range Upper Range VES NO Policy Model Additional and a significant difference? Is a significant difference? Lower Range Upper Range NO Policy Model Additional and a significant difference? Is the a significant difference? Lower Range Upper Range NO Policy Model Additional and a significant difference? Is a significant difference? Lower Range Upper Range NO Policy Model Additional and a significant difference? Is a significant difference? Lower Range Upper Range NO Policy Is a significant difference? Is a		6.69			7	6.69	()	0.054133778	0	
6.32 6.29 6.45 6.607 5.59 5.68 Minimum 5.59 Maximum 7.31 Maximum 7.31 Maximum 7.31 Sthere a significant difference? Lower Range Upper Range YES NO 10 6.32 0 0.018860444 0 0.02800044 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		6.68			8	6.68	()	0.049580444	0	
6.32 6.29 6.45 6.45 6.07 5.59 5.68 Minimum 5.59 Maximum 7.31 Maximum 7.31 Minimum 6.59 Maximum 7.31 Maximum 7.31 Sthere a significant difference? Lower Range Upper Range VES NO 10 6.32 0 0.018860444 0 0.028000444 0 0.028000444 0 0.028000444 0 0 0.028000444 0 0 0.028000444 0 0 0.028000444 0 0 0.0150027111 0 0.0150027111 0 0.052267111 0 0.0604247111 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		6.77			9	6.77	()	0.097760444	0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		6.32		1	0	6.32	()	0.018860444	0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		6.29		1	1	6.29	()	0.028000444	0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						6.45	()	5.37778E-05	0	
14)	0.150027111	_	
5.68 15 5.68 0 0.604247111 0 0 0 0 0 0 0 0 0)	0.752267111	0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$)	0.604247111		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.00								_	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						-			_	*	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									_	_	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						-			_	~	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						-			_	-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									_		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									_	*	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								-			
									-	_	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Minimum	Minimum		•		•		1	•	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		5.59	0	Xb(ave) =	6.45	7333333	Average	of back	ground data		
Is there a significant difference?		Maximum	Maximum	_ ` /	#DI\	//0!	Average	of down	ngradient data		
Is there a significant difference? $T_m = \#N/A$ $S_b^2 = 0.212920952 = [(X_{b1}-X_b(ave))^2+(X_{b2}-X_b(ave))^2(X_{bn}-X_b(ave))^2]/(n_b^2 + (N_b^2 - N_b^2 $		-	-	$T_b =$	1.76	1	From Lo	ookun Ta	able		
Lower Range Upper Range $S_m^2 = 0 = [(X_{m1}-X_m(ave))^2+(X_{m2}-X_m(ave))^2(X_{mn}-X_m(ave))^2]/(X_{mn}-X_m(ave))^2/(X_{m$		Is there a	significant		#N/A	١					
YES NO $T_{star} = \#DIV/0! = [Xm(ave)-Xb(ave)]/sqrt(sm2/nm + sb2/nb)$ $W_b = 0.01419473 = sb2/nb$ $W_m = \#DIV/0! = sm2/nm$		differe	ence?		0.21	2920952	$= [(X_{b1} - X_{b1} - X_{b1}$	K _b (ave)) ²	$+(X_{b2}-X_{b}(ave))^{2}$	$(X_{bn}-X_{b}(ave))^{2}]/(r$	ո _b -1)
$W_b = 0.01419473 = sb2/nb$ $W_m = \#DIV/0! = sm2/nm$				$s_m^2 =$	0						/(n _m -1
$W_{m} = \#DIV/0! = sm2/nm$ $T = \#DIV/0! = sm2/nm$ $T = \#DIV/0! = (M/b^*Tb + M/m^*Tm)/(M/b + M/m)$		YES	NO	T _{star} =	#DI\	//0!	= [Xm(a	ve)-Xb(a	ve)]/sqrt(sm2/nn	n + sb2/nb)	
T - #DIV/OL - (Mb*Th : Wm*Tm\/Mh : Wm)				W _b =	0.01	419473	= sb2/nl	b			
T = #DIV/OI = (\Mb*Tb + \Mm*Tm\/\Mb + \Mm)				$W_m = \#DIV/0! = sm2/nm$							
				T _{comp} =	#DI\	//0!	= (Wb*1	Γb + Wm	n*Tm)/(Wb + Wn	۱)	
#DIV/0!								#DIV	/O!		

ATTACHMENT I

WET Testing Review Memo, WETLIM10

Wrenn, Brian (DEQ)

From: DeBiasi, Deborah (DEQ)

Sent: Tuesday, January 19, 2016 4:52 PM

To: Wrenn, Brian (DEQ)

Subject: RE: Va0006254 Addison-Evans Water Production and Laboratory

Thanks! The WET language is fine.

As an alternative for when you have facilities like this that only discharge on a rare frequency, you can even word it to have them test when they have a discharge, until they have at least 4 sets of tests, with a minimum of 30 days between test events. It may make it more difficult for the compliance auditor to track, but might be your best choice in some cases.

As a side note, page 2 of the fact sheet, item 9:

a discharge into Swift Creek were-was

Good job!

Deborah DeBiasi 804-698-4028

Deborah.DeBiasi@deq.virginia.gov

From: Wrenn, Brian (DEQ)

Sent: Tuesday, January 19, 2016 4:31 PM

To: DeBiasi, Deborah (DEQ)

Subject: RE: Va0006254 Addison-Evans Water Production and Laboratory

Sorry Deborah! I've put the draft permit and fact sheet on the \underline{T} : as well.

Thanks, Brian Wrenn 804-527-5015

From: DeBiasi, Deborah (DEQ)

Sent: Tuesday, January 19, 2016 4:27 PM

To: Wrenn, Brian (DEQ)

Subject: RE: Va0006254 Addison-Evans Water Production and Laboratory

Is there a fact sheet or something to tell me what this place is, how much of a discharge, etc.?

Deborah DeBiasi 804-698-4028

Deborah.DeBiasi@deq.virginia.gov

From: Wrenn, Brian (DEQ)

Sent: Tuesday, January 19, 2016 4:16 PM

To: DeBiasi, Deborah (DEQ)

Subject: Va0006254 Addison-Evans Water Production and Laboratory

Deborah,

Please find on the \underline{T} : WET memo for the subject facility. Please let me know if you have any comments or questions. Thanks.

Brian L. Wrenn
VPDES Technical Reviewer
VA DEQ - Piedmont Regional Office
804-527-5015 (Ph.)
804-527-5106 (FAX)
brian.wrenn@deq.virginia.gov
www.deq.virginia.gov

MEMORANDUM

DEPARTMENT OF ENVIRONMENTAL QUALITY Piedmont Regional Office

4949-A Cox Road, Glen Allen, Virginia 23060-6295

804/527-5020

TO: Deborah DeBiasi, CO

FROM: Brian Wrenn DATE: January 20, 2016

SUBJECT: VPDES No. VA0006254 - Addison-Evans Water Production and Laboratory; Whole Effluent Toxicity

Monitoring

The subject facility is connected to the Chesterfield County collection system and has never discharged to surface waters. The VPDES permit is maintained for emergency circumstances. Because the facility has never discharged to surface waters, WET testing has never been conducted. It is anticipated that any potential discharges will be temporary and short in duration; therefore, chronic testing was not required. The following condition is included in the draft permit should circumstances arise that necessitate the facility to discharge:

C. WHOLE EFFLUENT TOXICITY (WET) PROGRAM

1. Commencing with the effective date of this permit, the permittee shall perform quarterly toxicity testing on Outfall 001 using 24-hour flow-proportioned composite samples. If a discharge does not occur during a given monitoring quarter, the permittee shall provide written notification to the DEQ Piedmont Regional Office by the 10th of the month following the monitoring quarter that a discharge did not occur. Toxicity testing shall be performed during the next immediate quarter until 4 sets of tests have been completed. The acute tests to use are:

48 Hour Static Acute Test with Ceriodaphnia dubia

48 Hour Static Acute Test with Pimephales promelas

These acute tests shall be conducted using 5 geometric dilutions of effluent with a minimum of 4 replicates, with 5 organisms in each. The NOAEC (No Observed Adverse Effect Concentration), as determined by hypothesis testing, shall be reported on the DMR. The LC50 should also be determined and noted on the submitted report. Tests in which control survival is less than 90% are not acceptable.

2. The test dilutions should be able to determine compliance with the following endpoint(s):

NOAEC = 100%

3. The test data will be evaluated statistically by DEQ for reasonable potential at the conclusion of the test period. The data may be evaluated sooner if requested by the permittee, or if toxicity has been noted. Should DEQ evaluation of the data indicate that a limit is needed, the permit may be modified or, alternatively, revoked and reissued to include a WET limit and compliance schedule for that outfall. Following written notification from DEQ of the need for including a WET limitation, the toxicity tests of Part I.C.1 may be discontinued. Test procedures and reporting shall be in accordance with the WET testing methods cited in 40 CFR 136.3.

If DEQ evaluation of the data shows that no limit is needed, the permittee may discontinue toxicity testing for the duration of the permit following written notification from DEQ.

4. The permit may be modified or revoked and reissued to include pollutant specific limits in lieu of a WET limit should it be demonstrated that toxicity is due to specific parameters. The pollutant specific limits must control the toxicity of the effluent.

Permit No. VA0006254 WET Monitoring Memo Page 2 of 2

5. The permittee shall report the results on the DMR and submit a copy of each toxicity test report in accordance with the following schedule:

Reporting Schedule:

Period	Period Dates	Compliance Date
Quarter 1	July 1- September 30	October 10
Quarter 2	October 1- December 31	January 10
Quarter 3	January 1- March 31	April 10
Quarter 4	April 1- June 30	July 10

A	В	C	D	E	F	G	Н		J	K	L	M	N	(
	Sprea	dsheet f	or det	termina	ation of	WET t	est endp	oints (or WET	limits				
	-						•							
	Excel 97			Acute End	dpoint/Permi	t I imit	Use as LC ₅₀ in	n Special Co	ndition, as Tl	Ja on DMR				
	1	ate: 01/10/05											1	-
	File: WETL	IM10.xls		ACUTE	100% =	NOAEC	LC ₅₀ =	NA	% Use as	NA	TUa			
	(MIX.EXE req						- 30		70 000 00					-
	1			ACUTE WL	Aa	0.3	Note: Inform t	the permittee	that if the mea	an of the data	exceeds			
							this TUa:	1.0	a limit may r	esult using V	VLA.EXE			
				Chronic En	dpoint/Permit	Limit	Use as NOEC	in Special C	ondition, as	TUc on DMF	2			
						T11					TII			-
				CHRONIC	1.462574684		NOEC =		9 % Use as	1.44	TU _c			
		<u> </u>		BOTH*	3.00000074		NOEC =		4 % Use as	2.94	TU _c			
Enter dat	ta in the cells v	vith blue type:		AML	1.462574684	I U _c	NOEC =	6	9 % Use as	1.44	TU _c		-	-
Entry Dat	0.	01/19/16		ACUTE W	l Aa c	3		Note: Inform	n the permittee	that if the ~	nean		-	+
Facility N		Addison-Evans	s WTP	CHRONIC		3 1			xceeds this Tl		1.0		-	-
VPDES N		VA0006254			acute expressed	<u>.</u>			esult using WI					
Outfall No		001						,						
				% Flow to I	e used from N	IIX.EXE		Difuser /mo	deling study	?				
Plant Flov			MGD					Enter Y/N	N					
Acute 1Q			MGD	100				Acute		:1				
Chronic 7	Q10:		MGD	100	%			Chronic	1	:1			1	-
Are data :	available to calc	ulate CV? (Y/I	N)	N	(Minimum of 1	0 data noint	s, same species,	needed)		Go to Page	2		1	+
		ulate ACR? (Y/I		N			greater/less than			Go to Page				-
			7		(9							
IWC _a		100	% Plant	flow/plant flo	w + 1Q10	NOTE: If the	ne IWCa is >33%	6, specify the	9					
IWC _c		100	% Plant	flow/plant flo	w + 7Q10	NO.	AEC = 100% test	t/endpoint fo	r use					
Dilution, a		1												
Dilution, o	chronic	1	100/ľ	WCc										-
WLAa			\ l==t======	-111 (0.0.7	III-) VI- Dilati-								ļ	
WLA _c					Ua) X's Dilutior									-
WLA _c					Uc) X's Dilution ts acute WLA to		ito							
VVLA _{a,c}		3	ACK AS W	VLA _a - conver	is acute WLA II	J CHIOHIC UH	11.5		-					-
ACR -acı	ite/chronic ratio	10	LC50/NOE	C (Default is	10 - if data are	available u	se tables Page 3)						-
	icient of variation				re available, us			,						+
Constants	s eA		Default = 0											
	eB		Default = 0											
	eC		Default = 2						1				-	
	eD	2.4334175	Detault = 2	2.43 (1 samp)	No. of sample:	1	**The Maximum				- AOD		-	-
LTA _{a,c}		1.2328341	WLAa,c X'	c 0A			LTA, X's eC. TI	ne ∟I Aa,c and	MDL using it a	re ariven by ti	ne ACK.			-
LTA _{a,c}		0.6010373	WLAc X's		4					Rounded NO	DEC'e	%		
MDL** wi	th I TA		TU _c	NOEC =	22 22222	(Protocts f	rom acute/chron	io tovioitu)		NOEC =		%		
MDL** wi			TU _c	NOEC =			rom acute/cnron			NOEC =		%		-
	lowest LTA	1.462574684		NOEC =		Lowest LTA		Jity)		NOEC =	69		-	
AIVIL WITH	IOWEST LTA	1.402074084	1 U _C	NOEC =	00.3/25//	Lowest LTA	. ∨ o e⊓			INUEU =	65		-	-
IE ONII	Y ACLITE END	POINT/LIMIT IS	NEEDED (CONVERTIV	DI FROM TII	to TII								
II ONL	. , , COTE END	. CANT/LIMIT IO	TALLULU, V	CONVENTIV	DETROIT TO	io ioa				Rounded LC	`50'e	%		-
MDL with	LTA	0.300000007	TUa	LC50 =	333.333325	%	Use NOAEC=	100%		LC50 =	NA	%		-
MDL with		0.300000007		LC50 =	683.725769		Use NOAEC=				NA	/0	-	-
	-···c	0.140231400	. •a	L000 -	303.123109	/0	USE NUMEUE	10070		L000 -	14/1			

A	В	С	D	E	F	G	Н	I	J	К	L	M	N	(
	Page 2	- Follow the	directions	to deve	elop a site	specific C\	/ (coefficie	nt of varia	tion)					
						1			,			-		
	IE VOLLH	AVE AT LEAST 10	DATA POIN	TO THAT		Vertebrate			Invertebrate			-		-
				10 IIIAI		IC ₂₅ Data			IC ₂₅ Data					
		NTIFIABLE (NOT												
		ECIES, ENTER T				or			or					-
		"G" (VERTEBRAT				LC ₅₀ Data	LN of data		LC ₅₀ Data	LN of data				
		RTEBRATE). THE		3E		******			******					
		JP FOR THE CAL				1		1	· · · · · · · · · · · · · · · · · · ·					
		THE DEFAULT VA				2		2						
		C WILL CHANGE		IS		3		3						
	ANYTHIN	G OTHER THAN (0.6.			4		4						
						5		5						
						6		6						
			<u> </u>			7		7						
	Coefficien	t of Variation for ef	fluent tests			8		8						
			<u> </u>			9		9						-
	CV =	0.6	(Default 0.6))	1			10						
					1			11						
	$\tilde{\sigma}^2 =$	0.3074847			1			12						
	ð =	0.554513029			1			13						
					1			14						
	Using the	log variance to de			1			15						
		(P. 100, step 2			1			16						
		(97% probability s		е	1			17						
	A =	-0.889296658			1			18						
	eA =	0.410944686			1			19						
					2	0		20						_
	Using the	log variance to de												_
		(P. 100, step 2			St Dev		NEED DATA			NEED DATA				_
	$\eth_4^2 =$	0.086177696			Mean	0		Mean	0	0				
	$\tilde{O}_4 =$	0.293560379			Variance	0	0.000000	Variance	0	0.000000				
	B =	-0.509098225			CV	0		CV	0					
	eB =	0.601037335												
	Using the	log variance to de												
		(P. 100, step 4	a of TSD)											
	$\eth^2 =$	0.3074847												
	ð =	0.554513029												
	C =	0.889296658												
	eC =	2.433417525												
	Using the	log variance to dev												
		(P. 100, step 4												
	n =	1	This number	r will most l	likely stay as "	1", for 1 sample	/month.							
	ð _n ² =	0.3074847												
	ð _n =	0.554513029												-
	D =	0.889296658				-						-		-
	U -					+								-
	eD =	2.433417525												

0	А	В	С	D	Е	F	G	Н	- 1	J	K	L	M	N	0
1		Page 3 - F	follow direc	ctions to	develop	a site spec	ific ACR	Acute to C	hronic Rat	io)			-		-
2					шололор	. оно орос		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	00						
								valid paired tes							
								e less than the	acute						
5 LU _E	₅₀ , since tr	ie ACR divide	es the LC ₅₀ by the	ne NOEC.	LC ₅₀ 'S > 100%	snould not be	usea.								-
7			Table 1. ACR	using Vert	ehrate data				1		Convert I	C _{co} 's and	NOFC's to C	hronic TU's	1
8			Tubic I. ACI	using vert	corate data							for use in V			
9										Table 3.		ACR used:			
:0	Set #	LC ₅₀	NOEC	Test ACR	Logarithm	Geomean	Antilog	ACR to Use							
1	1	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA			Enter LC ₅₀	TUc	Enter NOEC	TUc	
2	2	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA		1		NO DATA		NO DATA	
3	3	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA		2		NO DATA		NO DATA	
4	4 5	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	NO DATA NO DATA		3		NO DATA		NO DATA NO DATA	
:5	6	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A	#N/A	#N/A #N/A	NO DATA		5		NO DATA		NO DATA	
7	7	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA		6		NO DATA		NO DATA	
8	8	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA		7		NO DATA		NO DATA	
9	9	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA		8		NO DATA		NO DATA	
0	10	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA		9		NO DATA		NO DATA	
1					ACD for	tobroto deter		0		10		NO DATA		NO DATA	
2					ACR for vert	lebrate data:		U		11		NO DATA	-	NO DATA	-
4			Table 1. Result	t:	Vertebrate A	CR		0		12		NO DATA	+	NO DATA	
5			Table 2. Result		Invertebrate			0		14		NO DATA		NO DATA	
6					Lowest ACR			Default to 10		15		NO DATA		NO DATA	
7										16		NO DATA		NO DATA	
8			Table 2. ACR	using Inve	rtebrate data	1				17		NO DATA		NO DATA	
9										18		NO DATA		NO DATA	
0	Set #	LC ₅₀	NOEC	Toot ACD	Logarithm	Geomean	Antiloc	ACR to Use		19 20		NO DATA		NO DATA NO DATA	
2	<u>3et #</u>	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA		20		NO DATA	-	NO DATA	
3	2	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA		If WLA.EXE	determines	that an acute	limit is needed	d, you need to	
4	3	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA					Ja and then an		
5	4	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA		enter it here	:	NO DATA	%LC ₅₀		
6	5	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA				NO DATA	TUa		
7	6	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA							
8	7	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA							
9	8	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	NO DATA							
1	10	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	#N/A #N/A	NO DATA NO DATA					-		-
2	10	#IV/A	#IVA	#IN/A	#IN/A	#IV/A	#IN/A	NODATA							
3					ACR for vert	tebrate data:		0							
4															
5															
6										1			-		-
7				DILUTIO	N SERIE	S TO RECO	<u>OMMEND</u>								
8		Table 4.				Monitoring		Limit							
9							<u>TUc</u>	% Effluent	TUc						
0			ies based on		1	100	1.0								
1			ies to use for					69	1.4492754						
2		Dilution fac	tor to recomm	nend:		0.5		0.8306624							
3				L											
4		Dilution ser	ies to recomn	nend:		100.0	1.00	100.0	1.00						
5						50.0	2.00	83.1	1.20						
6						25.0	4.00	69.0	1.45						-
7						12.5	8.00	57.3	1.74						
8			=	., .		6.25	16.00	47.6	2.10						-
9			Extra dilution	s if neede	a	3.12	32.05	39.5	2.53				-		-
0						1.56	64.10	32.9	3.04						-
or I															

Cell: 19 Comment: This is assuming that the data are Type 2 data (none of the data in the data set are censored - "<" or ">"). Cell: K18 Comment: This is assuming that the data are Type 2 data (none of the data in the data set are censored - "<" or ">"). Cell: J22 Comment: Remember to change the "N" to "Y" if you have ratios entered, otherwise, they won't be used in the calculations. Cell: C40 Comment: If you have entered data to calculate an ACR on page 3, and this is still defaulted to "10", make sure you have selected "Y" in cell E21 Cell: C41 Comment: If you have entered data to calculate an effluent specific CV on page 2, and this is still defaulted to "0.6", make sure you have selected "Y" in cell E20 Cell: L48 Comment: See Row 151 for the appropriate dilution series to use for these NOEC's Cell: G62 Vertebrates are: Pimephales promelas Oncorhynchus mykiss Cyprinodon variegatus

Invertebrates are: Ceriodaphnia dubia Mysidopsis bahia

Cell: J62 Comment:

Cell: C117 Comment: Vertebrates are:

Pimephales promelas Cyprinodon variegatus

Cell: M119

Comment: The ACR has been picked up from cell C34 on Page 1. If you have paired data to calculate an ACR, enter it in the tables to the left, and make sure you have a "Y" in cell E21 on Page 1. Otherwise, the default of 10 will be used to convert your acute data.

Cell: M121

Comment: If you are only concerned with acute data, you can enter it in the NOEC column for conversion and the number calculated will be equivalent to the TUa. The calculation is the same: 100/NOEC = TUc or 100/LC50 = TUa.

Cell: C138
Comment: Invertebrates are:

Ceriodaphnia dubia Mysidopsis bahia

ATTACHMENT J NPDES Permit Rating Sheet

NPDES PERMIT RATING WORK SHEET

THE		ii iwiiii (3 WORK SHEET			Regular Additi	on		
NPDES NO. VA0000	6254					☐ DiscretionaryA☐ Score change, ☐ Deletion	ddition	us change	
Facility Name:Addise	on-Evans	s Water Produc	tion and Laboratory			□ Deletion			
City: Midlothian						-			
Receiving Water:Swi	ift Creek								
Reach Number: <u>NA</u>									
Is this facility a steam e of the following charact 1. Power output 500 M 2. A nuclear power plar 3. Cooling water discha 7Q10 flow rate ☐ YES; score is 600 (s	teristics? Wor great true true true true true true true tru	ater (not using ter than 25% of	the receiving stream's	gree	his permit for a ater than 100,00 YES; score is 70 NO (continue)		storm sew	er serving d	a population
FACTOR 1: Toxic PCS SIC Code: Industrial Subcategory		Primary S	IC Code: 4941	Other SIC Co	odes:				
Determine the Toxicity	potential	from Appendi	x A. Be sure to use the TO	TAL toxicity po	otential column	and check one)			
Toxicity Group	Code	Points	Toxicity Group	p Code	Points	Toxicity	Group	Code	Points
$\ \square$ No process waste streams	0	0	□ 3.	3	15	X 7.		7	35
□ 1.	1	5	□ 4.	4	20	□ 8.		8	40
□ 2.	2	10	□ 5.	5	25	□ 9.		9	45
			□ 6.	6	30	□ 10.		10	50
						Code Nu	umber Ch	ecked: <u>7</u>	
						Total Po	oints Fact	or 1: <u>35</u>	
FACTOR 2: Flow/	Stream	Flow Volur	ne (Complete either Section	n A or Section B	; check only one)			
Section A X Wastewate	er Flow C	Only Considered	d	Sec	tion B Waste	water and Stream Fl	ow Consi	dered	
Wastewater Type (See Instructions)		Code			stewater Type e Instructions)	Percent of instrear at Receiving Stream			ntration
Type I: Flow < 5 MGI Flow 5 to 10 MG		□ 11 □ 12	0 10					Code	Points
Flow > 10 to 50 M Flow > 50 MGD		□ 13 □ 14	20 30	Тур	pe I/III:	< 10 %		41	0
Type II: Flow < 1 MGI		X 21	10			10 % to < 50 %		42	10
Flow 1 to 5 MGD Flow > 5 to 10 M Flow > 10 MGD	IGD [$ \begin{array}{ccc} \square & 22 \\ \square & 23 \\ \square & 24 \end{array} $	20 30 50			> 50 %		43	20
Type III: Flow < 1 MG	D i	□ 31	0	Тур	pe II:	< 10 %		51	0
Flow 1 to 5 MGD Flow > 5 to 10 M Flow > 10 MGD	IGD	$ \begin{array}{ccc} & 32 \\ & 33 \\ & 34 \end{array} $	10 20 30			10 % to <50 %		52	20
1.10M > 10 MQD		⊔ 34	30			> 50 %		53	30

Code Checked from Section A or B: __21___ Total Points Factor 2: __10__

FACTOR 3: Convent (only when limited by the per		tants					NPI	DES NO: <u>V</u>	<u>.0006254</u>	<u>!</u>
A. Oxygen Demanding Pol	lutant: (check	one)	BOD 🗆 COD	Other:				_		
Permit Limits: (o	check one)	□ 100 □ > 1	00 lbs/day 0 to 1000 lbs/day 000 to 3000 lbs/d 000 lbs/day	ay	Code 1 2 3 4	P 0 5 1 2	5	Code C	'hecked: N	Ā
B. Total Suspended Solids	(TSS)							Points Sco	red:0_	
Permit Limits: (d		$X 100$ $\supset 1$	00 lbs/day 0 to 1000 lbs/day 000 to 5000 lbs/d 000 lbs/day	ay	Code 1 2 3 4	P 0 5 1. 2	5		Checked: _	2
C. Nitrogen Pollutant: (che	ck one)		Ammonia	Other:				Points Scor	ed: <u>5</u>	
Permit Limits: (o	check one)	□ <3 □ 300 □ >1	trogen Equivalent 00 lbs/day 0 to 1000 lbs/day 000 to 3000 lbs/da 000 lbs/day		Code 1 2 3 4	P 0 5 1. 2	5			
									Checked: _	1
							Total	Points Sco al Points Facto		
FACTOR 4: Public F Is there a public drinking w water is a tributary)? A pu above referenced supply.	vater supply lo	ocated within 50) miles downstrea ay include infiltra	m of the e <u>f</u> tion galler	fluent dis ies, or oi	scharge (this in ther methods o	icludes any be	ody of water to	which the	receiving
X YES (If yes, check toxic	city potential r	number below)								
☐ NO (If no, go to Factor	5)									
Determine the <i>human health</i> toxicity group colum			endix A. Use the	same SIC	code and	d subcategory	reference as in	n Factor 1. (Be	sure to us	e the <u>human</u>
Toxicity Group Co	de Points		Toxicity Group		Code	Points	Toxi	city Group	Code	Points
☐ No process waste streams 0	0		□ 3.	3		0	X 7.		7	15
□ 1. 1	0		□ 4.	4		0	□ 8.		8	20

5

10

□ 9.

Code Number Checked: __7___

Total Points Factor 4: __15___

□ 10.

25

30

10

2

0

□ 5.

□ 6.

 \square 2.

FACTOR 5: Water Quality Factors

NPDES NO. <u>VA0006254</u>

<i>A</i> .	Is (or will) one or more of the effluent discharge limits based on water quality factors of the receiving stream (rather than technology-based federal
	effluent guidelines, or technology-based state effluent guidelines), or has a wasteload allocation been assigned to the discharge:

		Code	Points
X	Yes (Temp)	1	10
П	No	2	0

B. Is the receiving water in compliance with applicable water quality standards for pollutants that are water quality limited in the permit?

		Code	Points
X	Yes	1	0
	No	2	5

C. Does the effluent discharged from this facility exhibit the reasonable potential to violate water quality standards due to whole effluent toxicity?

		Code	Point
	Yes	1	10
X	No	2	0

Code Number Checked: A 1 B 1 C 2

Points Factor 5: $A \underline{10} + B \underline{0} + C \underline{0} = \underline{10}$ TOTAL

FACTOR 6: Proximity to Near Coastal Waters

A. Base Score: Enter flow code here (from Factor 2): 21____

Enter the multiplication factor that corresponds to the flow code: __0.10___

Check appropriate facility HPRI Code (from PCS):

	HPRI#	Code	HPRI Score	Flow Code	Multiplication Factor
	1	1	20	11, 31, or 41	0.00
	2	2	0	12, 32, or 42	0.05
	3	3	30	13, 33, or 43	0.10
X	4	4	0	14 or 34	0.15
	5	5	20	21 or 51	0.10
				22 or 52	0.30
				23 or 53	0.60
HPR	RI code chec	ked: 4		24	1.00

Base Score: (HPRI Score) 0 X (Multiplication Factor) 0.10 = 0 (TOTAL POINTS)

B. Additional Points □ NEP Program

For a facility that has an HPRI code of 3, does the facility discharge to one of the estuaries enrolled in the National Estuary Protection (NEP) program (see instructions) or the Chesapeake Bay?

	Code	Point
☐ Yes	1	10
X No	2	0

C. Additional Points ☐ Great Lakes Area of Concern For a facility that has an HPRI code of 5, does the facility discharge any of the pollutants of concern into one of the Great Lakes' 31 areas of concern (see Instructions)

		Code	Points
	V_{PC}	1	10
X	No	2	0

Code Number Checked:

A <u>4</u> B <u>2</u> C <u>2</u>

Points Factor 6: $A \underline{0} + B \underline{0} + C \underline{0} = \underline{0}$ TOTAL

SCORE SUMMARY

	Factor	Description	Total Points				
	1	Toxic Pollutant Potential	35				
	2	Flows/Streamflow Volume	10				
	3	Conventional Pollutants	5				
	4	Public Health Impacts	15				
	5	Water Quality Factors	10				
	6	Proximity to Near Coastal Waters	0				
		TOTAL (Factors 1 through 6)	75				
S1. Is	the total sc	ore equal to or greater than 80? Yes (Facility is a major)	X No				
S2. If	the answer	to the above questions is no, would you like this facility to be of	discretionary major?				
X	No						
	Yes (Add 5	00 points to the above score and provide reason below:					
	Reason:						
	NEW SCO	ORE:					
	OLD SCORE:75						

Brian Wrenn Permit Reviewer's Name	
804-527-5015 Phone Number	
January 20, 2016 Date	

ATTACHMENT K

Owner Comments and DEQ Responses

Wrenn, Brian (DEQ)

From: Sirois, David [Siroisd@chesterfield.gov]
Sent: Thursday, March 17, 2016 4:16 PM

To: Wrenn, Brian (DEQ)

Subject: RE: Comments for VA0006254, Addison-Evans Water Production and Laboratory

Brian,

Sorry for the delay, I was awaiting your email unaware it had been filtered out by our firewall. I just found it this afternoon in the spam filter quarantine.

I have reviewed your responses to our concerns with the permit issuance documentation. We will address the parameters selected by DEQ as in need of corrective action and will provide our input as to if & how they might need to be addressed in our Corrective Action Plan (CAP) as recommended in your email below. We concur that your responses are appropriate and will begin on our CAP to be completed within 180 days from the day of the permit being issued.

Thank-you for working with us on this important permit approval process.

Dave

David J. Sirois
Plant Manager
Chesterfield County Utilities
Addison-Evans Water Production & Laboratory Facility
13400 Hull Street Road
Midlothian, VA 23112
Phone 804-318-8140

E-Mail: siroisd@chesterfield.gov

From: Wrenn, Brian (DEQ) [mailto:Brian.Wrenn@deq.virginia.gov]

Sent: Tuesday, March 15, 2016 10:58 AM

To: Sirois, David

Subject: RE: Comments for VA0006254, Addison-Evans Water Production and Laboratory

David,

I have responded below to the comments you made on the draft permit package for the Addison-Evans Water Production and Laboratory. Once you have reviewed and concurred with the responses, please respond by email, stating such. Once I have received your concurrence, I will move forward with the public notice.

Thanks, Brian Wrenn 804-527-5015

- 1. The submission period for the CAP has been changed to 180 days as requested.
- 2. This issue can be resolved as part of the CAP submitted after issuance of the permit.
- 3. This issue can be resolved as part of the CAP submitted after issuance of the permit.
- 4. This issue can be resolved as part of the CAP submitted after issuance of the permit.
- 5. Comment noted.

- 6. Comment noted.
- 7. Comment noted. A key is included in the GW Data Input & Results worksheet (page 1) of each pollutant analysis under the Data Entry chart (identified as Well Designation), the Significance to Background results, and the Linear Trend Regression results. We understand that the labeling may be confusing on the charts and we will work to correct this in the future.
- 8. Corrected as requested.

9. Corrected as requested.

From: Sirois, David [mailto:Siroisd@chesterfield.gov]

Sent: Tuesday, March 01, 2016 3:45 PM

To: Wrenn, Brian (DEQ)

Subject: Comments for VA0006254, Addison-Evans Water Production and Laboratory

Brian,

Regarding the DEQ permit provided by email on 23 February 2016 the following comments should be considered:

- 1. During our verbal discussions it was indicated there would be a 180-day period from the effective date of the permit to submit a Corrective Action Plan. On page 5 of 7 in the permit requirements (Part 1, Section 5b Groundwater Monitoring Corrective Action Plan) it states "The permittee shall submit a Corrective Action Plan (CAP) within 60 days of the effective date of the permit." In Attachment H of the permit the scope of the CAP has substantially changed since the 2011 permit approval. The 180-day deadline will be needed to examine the data trending, the corrective actions identified as warranted, investigating potential causes for parameter changes, and appropriate responses. Our verbal agreement on the timeline review of the permit was predicated on a 180-day deadline.
- 2. As part of the CAP we will need to investigate whether the 2011 selection of the location of the background well (MW-4) was a correct representation of background groundwater for the property. While the site MW-4 is undoubtedly upstream of the other wells, based on the 3 years of data the difference between most of the parameters in the monitoring wells and the background well MW-4 begs the question is this well significantly different from the MW monitoring wells for various reasons other than site contamination. For example, MW-4 is located on the hill created to build the man-made reservoir: are the differences in monitoring values representative of the different soils from this fill area compared to the natural flat lands soils? The site of MW-4 and its elevation does not experience the floodwaters that occasionally frequent the property, can this cause a difference? Does MW-4 experience "river bank filtration" unavailable to the other monitoring wells? (i.e. riverbank filtration is a time tested technique for purifying water first used in Europe but now used throughout the world, including some in the United States of America. The other monitoring wells may be too far from the reservoir walls to benefit from this treatment). Such reasons may explain why the original choice of MW-3 was in the flat lands of the property common to the other monitoring wells; perhaps during original evaluation of well locations these types of concerns were given more weight than in 2011 (i.e. the property looks much more congruous after years of lawn care and maintenance, the potential difference in soils is less obvious when viewing the property now than as it might have been when the wells were first located).
- 3. We would request a re-evaluation of the finding that pH measured from the monitoring wells warrants corrective action. As stated in the data evaluation performed by DEQ:
 - a. The background well MW-4 shows a slight decrease with a moderately strong degree of linearity.
 - b. The monitoring well MW-1 shows a slight increase with a very weak degree of linearity.
 - c. The monitoring well MW-2 shows a slight increase with a very weak degree of linearity.
 - d. The monitoring well MW-3 shows a slight decrease with a very weak degree of linearity.
 - e. The monitoring well MW-5 shows a slight decrease with a very weak degree of linearity.

We would suggest the statistics show very weak trends, except for the background well. DEQ recognizes that all the data measured are within the pH standards for the Piedmont region. With the exception of the 11/13/13 values, the data for the monitoring wells (excluding the background well) range between 6.14 and 7.15 – this is a very well expected range for groundwater (and for surface water) in the Richmond area. The 11/13/13 data for the monitoring wells (excluding the background well) range between 7.11 and 8.27 was significantly higher for all of these monitoring wells, but as stated are within the acceptable Piedmont region values of being between 5.5 to 8.5. In contrast the well that most strongly shows a trend according to the DEQ analysis is the background well MW-4, which showed a decreasing trend in pH and the lowest value for MW-4 was substantially lower than the other monitoring wells at a pH of 5.59. For these reasons we feel the DEQ should reconsider their finding that the pH of the monitoring wells warrants corrective action.

- 4. We have some concerns regarding the statistics used to determine the need for a corrective action. When analyzing data that is less than detection there is a great deal of uncertainty regarding the actual values of such data and how these non-detect values were incorporated into the statistical calculations. For example is the true data closer to zero or to the detection limit? There are a few cases where it seems that if the laboratory detection limits were used in the statistical comparison of compliance wells versus background well, then the conclusion of a significant difference may not have been reached. Similarly, in the linear regression analysis used to evaluate data trends over time, use of detection limits instead of zeros may have led to different conclusions such as no trend or a weaker trend. It is not clear if the trends observed were evaluated for their statistical significance beyond simple qualitative statements (we're unsure how these descriptive statements are determined). Lastly, we have some concerns that a simple linear regression analysis used to evaluate trends in groundwater quality data over time could be biased by the selected monitoring interval. Would it be possible (and what degree of difficulty for DEQ would there be) to recalculate the statistics and trends using the detection limit or one-half of the laboratory detection limit instead of zero for the constituents of concern? Our intent is to concentrate resources & effort on the better defined issues and tangible work that can be performed to known constituents of concern. For the more tenuous trends and less certain parameter increases, the corrective action plan may be geared towards more data collection as may be needed before plans of remediation are designed. .
- 5. We understand the analyses for nutrient monitoring being added to the permit were we to discharge. Given the concerns with nutrients and Chesapeake Bay eutrophication this is understandable.
- 6. We concur that during this next monitoring period the emphasis should be on further data collection from monitoring well sampling.
- 7. In the "Addison-Evans Groundwater Monitoring Regression Trend" plots created by the DEQ there is an apparent numbering/labeling issue. The background well (MW-4), and the monitoring wells MW-1, MW-2, and MW-3 appear to be labeled/numbered correctly (i.e. Compliance Wells: Background, #1, #2, and #3). However the graph labeled as Compliance Well #4 is likely groundwater monitoring well MW-5, and the graph labeled as Compliance Well #5 appears to have no data. We suspect this may just be a software glitch, however it does make the initial evaluation of the plots confusing. Perhaps in the future if this issue arises text discussion or a key might be appropriate if the software does not allow for relabeling of the plots.
- 8. In the Groundwater Data Evaluation section on page 2 of 5 in the Aluminum discussion conclusion, there is an error. Currently in the Groundwater Standard text it states "Aluminum monitoring was included in the facility's approved GWMP because the facility uses aluminum sulfate (Alum) as a coagulant in the treatment process..." In the Permit fact Sheet page 2 of 12, item 12 Materials Storage is correct in listing ferric sulfate that is used as a coagulant and not listing alum as a material stored. The plant had changed coagulants from alum to ferric sulfate in 1999. The statement above could be corrected to: "Aluminum monitoring was included in the facility's approved GWMP because the facility used aluminum sulfate (Alum) as a coagulant for many years in the treatment process (1967 through 1999)..."

9. In the Groundwater Data Evaluation section on page 3 of 5 in the Sulfate discussion conclusion, there appears to be a minor typo. It states, "Because MW-3 and MW-5 concentrations exceeded the groundwater criteria for chloride, MW-3 and MW-5 showed a statistically significant difference from MW-4...". As this conclusion is based on the discussion of sulfate data, the use of the word chloride is likely an error and should be substituted with sulfate.

If at all possible, we would like to meet with you to discuss some of these concerns at your earliest convenience. Should you have any questions or concerns, feel free to contact me using my contact information provided below. Thank-you for the opportunity to comment on the permit.

Dave

David J. Sirois
Plant Manager
Chesterfield County Utilities
Addison-Evans Water Production & Laboratory Facility
13400 Hull Street Road
Midlothian, VA 23112
Phone 804-318-8140

E-Mail: siroisd@chesterfield.gov

From: Wrenn, Brian (DEQ) [mailto:Brian.Wrenn@deq.virginia.gov]

Sent: Tuesday, February 23, 2016 3:17 PM

To: Sirois, David

Subject: Owner Comment Request for VA0006254, Addison-Evans Water Production and Laboratory

David,

As we discussed earlier today, please find attached a request for owner comment letter. Due to the size of the files, I have placed the documents for review on our <u>fileshare</u>. I neglected to mention that we've added monitoring requirements for nutrients. These requirements are being included in all permits for non-significant dischargers to the Chesapeake Bay watershed. No limits are assigned and the monitoring is required annually and only for the first four sample periods of the permit. If you have any questions, please do not hesitate to contact me. Thanks.

Brian L. Wrenn
VPDES Technical Reviewer
VA DEQ - Piedmont Regional Office
804-527-5015 (Ph.)
804-527-5106 (FAX)
brian.wrenn@deq.virginia.gov
www.deq.virginia.gov

RECEIVED PRO APR 77 ZÜI6

Planning District Commission

Metropolitan Planning Organizatio

Town of Ashland Counties of Charles City Chesterfield Goochland Hanover Henrico New Kent Powhatan

Richmond

City of

MEMORANDUM

TO:

Brian Wrenn

Department of Environmental Quality

FROM:

Barbara V. Jacocks, AICP

Director of Planning

DATE:

April 22, 2016

SUBJECT:

ENVIRONMENTAL REVIEW AND COMMENT

Project Title:

Addison-Evans Water Production and Laboratory VPDES

Permit

CCN: VA15-0322-3469-015-00-041

The RRPDC received a request for comment concerning this project on March 22, 2016. RRPDC staff sent the request to staff of planning district member localities on March 29, 2016 in order to solicit comments to include in a comment letter. Any documents associated with the request were made available to locality staff. Response comments from locality staff were requested on or before close of business April 15, 2016.

RRPDC staff received no response comments from locality staffs.

RRPDC staff has no comments or concerns about this permit at this time.

Barbará V. Jacocks, AICP

Director of Planning

BVJ/sgs